Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1282230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027489

RESUMO

Introduction: Alcohol consumption despite negative consequences is a core symptom of alcohol use disorder. This can be modeled in mice by pairing aversive stimuli with alcohol consumption, such as adding the bitter tastant quinine to the alcohol solution. If an animal continues to drink alcohol despite such negative stimuli, this is typically considered aversion-resistant, or inflexible, drinking behavior. Previous studies in our lab have found that females are more aversion-resistant than males in that they tolerate higher concentrations of quinine before they suppress their alcohol intake. Interestingly, we did not observe any differences in intake across the estrous cycle. In regards to neuronal activation patterns during quinine-alcohol intake, we have found that male mice show higher levels of activation in the ventromedial prefrontal cortex and posterior insular cortex, while females show higher levels of activation in the ventral tegmental area. Methods: In the experiments presented here, we conducted ovariectomies to further examine the role of circulating sex hormones in aversion-resistant alcohol intake and neuronal activation patterns. Furthermore, we used hormonal addback of estradiol or progesterone to determine which ovarian sex hormone mediates aversion-resistant consumption. Results: We found that ovariectomy reduced quinine-adulterated alcohol intake, demonstrating that circulating sex hormones play a role in this behavior. We also observed reduced neuronal activation in the VTA of ovariectomized mice compared to sham females, and that estradiol supplementation reversed the effect of ovariectomy on quinine-alcohol intake. Discussion: Taken together with our prior data, these findings suggest that circulating estradiol contributes to the expression of aversion-resistant alcohol intake and neuronal activity in the VTA. However, since this behavior is not affected by the estrous cycle, we believe this is due to a threshold level of this hormone, as opposed to fluctuations that occur across the estrous cycle.

2.
Microbiol Spectr ; 11(6): e0250523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37916811

RESUMO

IMPORTANCE: Cold seeps occur in continental margins worldwide and are deep-sea oases. Anaerobic oxidation of methane is an important microbial process in the cold seeps and plays an important role in regulating methane content. This study elucidates the diversity and potential activities of major microbial groups in dependent anaerobic methane oxidation and sulfate-dependent anaerobic methane oxidation processes and provides direct evidence for the occurrence of nitrate-/nitrite-dependent anaerobic methane oxidation (Nr-/N-DAMO) as a previously overlooked microbial methane sink in the hydrate-bearing sediments of the South China Sea. This study provides direct evidence for occurrence of Nr-/N-DAMO as an important methane sink in the deep-sea cold seeps.


Assuntos
Sedimentos Geológicos , Metano , Anaerobiose , Metano/metabolismo , RNA Ribossômico 16S , Oxirredução , Nitratos , China
3.
Sci Data ; 10(1): 596, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684262

RESUMO

Cold seeps harbor abundant and diverse microbes with tremendous potential for biological applications and that have a significant influence on biogeochemical cycles. Although recent metagenomic studies have expanded our understanding of the community and function of seep microorganisms, knowledge of the diversity and genetic repertoire of global seep microbes is lacking. Here, we collected a compilation of 165 metagenomic datasets from 16 cold seep sites across the globe to construct a comprehensive gene and genome catalog. The non-redundant gene catalog comprised 147 million genes, and 36% of them could not be assigned to a function with the currently available databases. A total of 3,164 species-level representative metagenome-assembled genomes (MAGs) were obtained, most of which (94%) belonged to novel species. Of them, 81 ANME species were identified that cover all subclades except ANME-2d, and 23 syntrophic SRB species spanned the Seep-SRB1a, Seep-SRB1g, and Seep-SRB2 clades. The non-redundant gene and MAG catalog is a valuable resource that will aid in deepening our understanding of the functions of cold seep microbiomes.


Assuntos
Genômica , Metagenoma , Bases de Dados Factuais , Conhecimento , Metagenômica , Bactérias , Archaea
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194955, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331650

RESUMO

Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.


Assuntos
Inflamassomos , Piroptose , Inflamassomos/metabolismo , Ubiquitinação , Citocinas
5.
Adv Sci (Weinh) ; 10(5): e2203884, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563124

RESUMO

Triple-negative breast cancer (TNBC) has higher molecular heterogeneity and metastatic potential and the poorest prognosis. Because of limited therapeutics against TNBC, irradiation (IR) therapy is still a common treatment option for patients with lymph nodes or brain metastasis. Thus, it is urgent to develop strategies to enhance the sensitivity of TNBC tumors to low-dose IR. Here, the authors report that E3 ubiquitin ligase Ring finger protein 126 (RNF126) is important for IR-induced ATR-CHK1 pathway activation to enhance DNA damage repair (DDR). Mechanistically, RNF126 physically associates with the MRE11-RAD50-NBS1 (MRN) complex and ubiquitinates MRE11 at K339 and K480 to increase its DNA exonuclease activity, subsequent RPA binding, and ATR phosphorylation, promoting sustained DDR in a homologous recombination repair-prone manner. Accordingly, depletion of RNF126 leads to increased genomic instability and radiation sensitivity in both TNBC cells and mice. Furthermore, it is found that RNF126 expression is induced by IR activating the HER2-AKT-NF-κB pathway and targeting RNF126 expression with dihydroartemisinin significantly improves the sensitivity of TNBC tumors in the brain to IR treatment in vivo. Together, these results reveal that RNF126-mediated MRE11 ubiquitination is a critical regulator of the DDR, which provides a promising target for improving the sensitivity of TNBC to radiotherapy.


Assuntos
Dano ao DNA , Reparo do DNA , Neoplasias de Mama Triplo Negativas , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Proteína Homóloga a MRE11/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Cancer Lett ; 543: 215791, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700821

RESUMO

Multiple myeloma (MM) is a hematologic malignancy derived from clonal expansion of plasma cells within the bone marrow and it may progress to the extramedullary region in late stage of the disease course. c-Maf, an oncogenic zipper leucine transcription factor, is overexpressed in more than 50% MM cell lines and primary species in association with chromosomal translocation, aberrant signaling transduction and modulation of stability. By triggering the transcription of critical genes including CCND2, ITGB7, CCR1, ARK5, c-Maf promotes MM progress, proliferation, survival and chemoresistance. Notably, c-Maf is usually expressed at the embryonic stage to promote cell differentiation but less expressed in healthy adult cells. c-Maf has long been proposed as a promising therapeutic target of MM and a panel of small molecule compounds have been identified to downregulate c-Maf and display potent anti-myeloma activities. In the current article, we take a concise summary on the advances in c-Maf biology, pathophysiology, and targeted drug discovery in the potential treatment of MM.


Assuntos
Mieloma Múltiplo , Medula Óssea/patologia , Carcinogênese/metabolismo , Humanos , Fator de Transcrição MafF/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Plasmócitos
8.
Mar Pollut Bull ; 176: 113458, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35217425

RESUMO

Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior. At present, six pathways of autotrophic carbon fixation have been found: the Calvin cycle, the reductive Acetyl-CoA or Wood-Ljungdahl pathway (rAcCoA), the reductive tricarboxylic acid cycle (rTCA), the 3-hydroxypropionate bicycle (3HP), the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB), and the dicarboxylate/4-hydroxybutyrate cycle (DC/4HB). Although our knowledge about carbon fixation pathways in the ocean has increased significantly, carbon fixation pathways in the cold seeps are still unknown. In this study, we collected sediment samples from two cold seeps and one trough in the south China sea (SCS), and investigated with metagenomic and metagenome assembled genomes (MAGs). We found that six autotrophic carbon fixation pathways present in the cold seeps and trough with rTCA cycle was the most common pathway, whose genes were particularly high in the cold seeps and increased with sediment depths; the rAcCoA cycle mainly occurred in the cold seep regions, and the abundance of module genes increased with sediment depths. We also elucidated members of chemoautotrophic microorganisms involved in these six carbon-fixation pathways. The rAcCoA, rTCA and DC/4-HB cycles required significantly less energy probably play an important role in the deep-sea environments, especially in the cold seeps. This study provided metabolic insights into the carbon fixation pathways in the cold seeps, and laid the foundation for future detailed study on processes and rates of carbon fixation in the deep-sea ecosystems.


Assuntos
Ciclo do Carbono , Ecossistema , Carbono/metabolismo , Metagenoma , Filogenia
9.
Front Microbiol ; 13: 1060206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620029

RESUMO

Cold seeps are oasis for the microbes in the deep-sea ecosystems, and various cold seeps are located along the northern slope of the South China Sea (SCS). However, by far most microbial ecological studies were limited to specific cold seep in the SCS, and lack of comparison between different regions. Here, the surface sediments (0-4 cm) from the Site F/Haima cold seeps and the Xisha trough in the SCS were used to elucidate the biogeography of microbial communities, with particular interest in the typical functional groups involved in the anaerobic oxidation of methane (AOM) process. Distinct microbial clusters corresponding to the three sampling regions were formed, and significantly higher gene abundance of functional groups were present in the cold seeps than the trough. This biogeographical distribution could be explained by the geochemical characteristics of sediments, such as total nitrogen (TN), total phosphorus (TP), nitrate (NO3 -), total sulfur (TS) and carbon to nitrogen ratios (C/N). Phylogenetic analysis demonstrated that mcrA and pmoA genotypes were closely affiliated with those from wetland and mangroves, where denitrifying anaerobic methane oxidation (DAMO) process frequently occurred; and highly diversified dsrB genotypes were revealed as well. In addition, significantly higher relative abundance of NC10 group was found in the Xisha trough, suggesting that nitrite-dependent DAMO (N-DAMO) process was more important in the hydrate-bearing trough, although its potential ecological contribution to AOM deserves further investigation. Our study also further demonstrated the necessity of combining functional genes and 16S rRNA gene to obtain a comprehensive picture of the population shifts of natural microbial communities among different oceanic regions.

10.
Sci Total Environ ; 748: 142459, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113688

RESUMO

Microbes play a crucial role in mediating the methane flux in deep-sea cold seep ecosystems, where only methane-related microbes have been well studied, while the whole microbial community and their ecological functions were still largely unknown. Here, we utilized metagenomic data to investigate how the structure and metabolism of microbial community shift in the reduced sediment habitats along the spatial scales. Microbial communities in cold seeps and troughs formed two distinct clades likely driven by environmental factors, such as total sulfur, total phosphate and NO3-, rather than geographical proximity. The predominance of Methanosarcinales reflected a high potential for methane production. In addition to the already well-reported ANME-1/SRB consortia, prevalence of bacterial Methylomirabilis and archaeal Methanoperedens as important performers in the n-damo process with respective of nitrite and nitrate as respective electron acceptor was observed in deep-sea hydrate-bearing regions as well. Aerobic methane oxidization was conducted mainly by type I methanotrophs at Site F (Formosa Ridge), but also via the n-damo process by Methanoperedens and Methylomirabilis in the Haima seep and Xisha Trough, respectively. Based on the high abundance of those denitrifying-dependent methane oxidizers and their related functional genes, we concluded that the previously overlooked n-damo process might be a major methane sink in cold seeps or in gas hydrate-bearing sediments if nitrate is available in the anoxic zones. The signature of isotopic labeling would be essential to confirm the contribution of different anaerobic methane oxidizing pathways in deep-sea cold seep ecosystems.


Assuntos
Sedimentos Geológicos , Metano , Anaerobiose , Archaea/genética , Desnitrificação , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Taiwan
11.
BMC Genomics ; 21(1): 19, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906861

RESUMO

BACKGROUND: Growth hormone inducible transmembrane protein (GHITM) is a highly conserved transmembrane protein. This study was conducted to investigate the role of GHITM gene in the apoptosis and growth of the golden apple snail Pomacea canaliculate. RESULTS: The complete cDNA of this gene was cloned using the rapid amplification of cDNA ends (RACE) method and subjected to bioinformatics analysis. The full-length cDNA was 2242 bp, including an open reading frame of 1021 bp that encoded a protein of 342 amino acid residues. The mRNA expression profiles of GHITM gene in different tissues (liver, kidney, gonad and foot) and different growth phases (6-months old and 2-years old) showed that it was expressed in various tissues and different growth phases. Silencing of the GHITM gene by RNAi (RNA interference) experiments revealed that the GHITM gene possibly plays a role in inhibiting apoptosis through detecting the Caspase (Cysteine-requiring Aspartate Protease)-3 activity. In addition, the aperture width and body whorl length of the snail was significantly affected by RNAi, suggesting that this gene plays a significant role in promoting the growth of the organism. CONCLUSIONS: These results demonstrated that the GHITM gene was involved in apoptosis and growth in golden apple snail.


Assuntos
Apoptose/genética , Proteínas de Membrana/genética , Fases de Leitura Aberta/genética , Caramujos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Membrana/classificação , Proteínas de Membrana/metabolismo , Filogenia , Interferência de RNA , Caramujos/crescimento & desenvolvimento , Caramujos/metabolismo
12.
Cell Mol Life Sci ; 77(8): 1483-1495, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31637449

RESUMO

Ubiquitin modification plays significant roles in protein fate determination, signaling transduction, and cellular processes. Over the past 2 decades, the number of studies on ubiquitination has demonstrated explosive growth. E3 ubiquitin ligases are the key enzymes that determine the substrate specificity and are involved in cancer. Several recent studies shed light on the functions and mechanisms of HECTD3 E3 ubiquitin ligase. This review describes the progress in the recent studies of HECTD3 in cancer and other diseases. We propose that HECTD3 is a potential biomarker and a therapeutic target, and discuss the future directions for HECTD3 investigations.


Assuntos
Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos
13.
Front Genet ; 10: 1211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824581

RESUMO

The Pacific oyster, Crassostrea gigas, belongs to one of the most species-rich phyla and provides important ecological and economical services. Here we present a genome assembly for a variety of this species, black-shelled Pacific oyster, using a combination of 61.8 Gb Nanopore long reads and 105.6 Gb raw BGI-seq short reads. The genome assembly comprised 3,676 contigs, with a total length of 587 Mb and a contig N50 of 581 kb. Annotation of the genome assembly identified 283 Mb (48.32%) of repetitive sequences and a total of 26,811 protein-coding genes. A long-term transposable element active, accompanied by recent expansion (1 million years ago), was detected in this genome. The divergence between black-shelled and the previous published Pacific oysters was estimated at about 2.2 million years ago, which implies that species C. gigas had great intraspecific genetic variations. Moreover, we identified 148/188 specifically expanded/contracted gene families in this genome. We believe this genome assembly will be a valuable resource for understanding the genetic breeding, conservation, and evolution of oysters and bivalves.

14.
Fish Shellfish Immunol ; 92: 64-71, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31150764

RESUMO

The black-and-white traits on shells and mantle edges of the Pacific oyster, Crassostrea gigas, are inheritable and correlated, and black shells (melanin pigmentation) are usually found in the Pacific oysters. Based on differentially expressed genes from RNA-Seq and physiological characteristics, in this study, Black-shelled Pacific oysters (BSO) and White-shelled Pacific oysters (WSO) were selected to determine the molecular differences between oysters with obviously different melanin content. The differences in the process of immune recognition and modulation indicated that BSO may be more sensitive to the immune substances. There might have different modulation mode of apoptosis and phagocytosis between BSO and WSO, and caspase-3 might have played a key role in the apoptotic process of BSO. Different oxidation-related pathways were enriched in both BSO and WSO, suggesting the different response strategies of BSO and WSO to oxidative stress. The physiological evidences showed that, compared with WSO, in BSO, the tyrosinase content, the caspase-3 activity and the suppression of hydroxyl radical increased, and the reactive oxygen species concentration decreased. Therefore, immune-related molecular and physiological differences were found between BSO and WSO.


Assuntos
Apoptose/fisiologia , Crassostrea/imunologia , Melaninas/fisiologia , Fagocitose/fisiologia , Animais , Crassostrea/genética , Melaninas/imunologia
15.
Front Physiol ; 9: 221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615921

RESUMO

Light-sensitivity is important for mollusc survival, as it plays a vital role in reproduction and predator avoidance. Light-sensitivity has been demonstrated in the adult Pacific oyster Crassostrea gigas, but the genes associated with light-sensitivity remain unclear. In the present study, we designed experiments to identify the genes associated with light-sensitivity in adult oysters. First, we assessed the Pacific oyster genome and identified 368 genes annotated with the terms associated with light-sensitivity. Second, the function of the four rhodopsin-like superfamily member genes was tested by using RNAi. The results showed that the highest level of mRNA expression of the vision-related genes was in the mantle; however, this finding is not true for all oyster genes. Interestingly, we also found four rhodopsin-like superfamily member genes expressed at an very high level in the mantle tissue. In the RNAi experiment, when one of rhodopsin-like superfamily member genes (CGI_1001253) was inhibited, the light-sensitivity capacity of the injected oysters was significantly reduced, suggesting that CGI_10012534 may be associated with light-sensitivity in the adult Pacific oyster.

16.
Mar Biotechnol (NY) ; 20(4): 425-435, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29594756

RESUMO

Left-right (L-R) asymmetry is controlled by gene regulation pathways for the L-R axis, and in vertebrates, the gene Pitx2 in TGF-ß signaling pathway plays important roles in the asymmetrical formation of organs. However, less is known about the asymmetries of anatomically identical paired organs, as well as the transcriptional regulation mechanism of the gene Pitx in invertebrates. Here, we report the molecular biological differences between the left and right mantles of an invertebrate, the Pacific oyster Crassostrea gigas, and propose one possible mechanism underlying those differences. RNA sequencing (RNA-seq) analysis indicated that the paired organs showed different gene expression patterns, suggesting possible functional differences in shell formation, pheromone signaling, nerve conduction, the stress response, and other physiological processes. RNA-seq and real-time qPCR analysis indicated high right-side expression of the Pitx homolog (cgPitx) in oyster mantle, supporting a conserved role for Pitx in controlling asymmetry. Methylation-dependent restriction-site associated DNA sequencing (MethylRAD) identified a methylation site in the promoter region of cgPitx and showed significantly different methylation levels between the left and right mantles. This is the first report, to our knowledge, of such a difference in methylation in spiralians, and it was further confirmed in 18 other individuals by using a pyrosequencing assay. The miRNome analysis and the TGF-ß receptor/Smad inhibition experiment further supported that several genes in TGF-ß signaling pathway may be related with the L/R asymmetry of oyster mantles. These results suggested that the molecular differentiation of the oyster's paired left and right mantles is significant, TGF-ß signaling pathway could be involved in establishing or maintaining the asymmetry, and the cgPitx gene as one of genes in this pathway; the different methylation levels in its promoter regions between L/R mantles was the one of possible mechanisms regulating the left-right functional differentiation.


Assuntos
Padronização Corporal/genética , Crassostrea/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Exoesqueleto , Animais , Padronização Corporal/fisiologia , Crassostrea/crescimento & desenvolvimento , Crassostrea/metabolismo , Metilação de DNA , Análise de Sequência de RNA , Transdução de Sinais/genética , Fator de Crescimento Transformador beta
17.
Front Physiol ; 8: 699, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955252

RESUMO

The melanin pigmentation of the adductor muscle scar and the outer surface of the shell are among attractive features and their pigmentation patterns and mechanism still remains unknown in the Pacific oyster Crassostrea gigas. To study these pigmentation patterns, the colors of the adductor muscle scar vs. the outer surface of the shell on the same side were compared. No relevance was found between the colors of the adductor muscle scars and the corresponding outer surface of the shells, suggesting that their pigmentation processes were independent. Interestingly, a relationship between the color of the adductor muscle scars and the dried soft-body weight of Pacific oysters was found, which could be explained by the high hydroxyl free radical scavenging capacity of the muscle attached to the black adductor muscle scar. After the transcriptomes of pigmented and unpigmented adductor muscles and mantles were studied by RNAseq and compared, it was found that the retinol metabolism pathway were likely to be involved in melanin deposition on the adductor muscle scar and the outer surface of the shell, and that the different members of the tyrosinase or Cytochrome P450 gene families could play a role in the independent pigmentation of different organs.

18.
Sci Rep ; 6: 21805, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892768

RESUMO

A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi--Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.


Assuntos
Cádmio/metabolismo , Glomeromycota/fisiologia , Lonicera/crescimento & desenvolvimento , Micorrizas/fisiologia , Poluentes do Solo/metabolismo , Cádmio/análise , Cádmio/toxicidade , Peroxidação de Lipídeos , Lonicera/efeitos dos fármacos , Lonicera/metabolismo , Lonicera/microbiologia , Estresse Oxidativo , Fitoquelatinas/metabolismo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
19.
PLoS One ; 10(7): e0132347, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176959

RESUMO

The plant growth, phosphate acquisition, Cd translocation, phytochelatins (PCs) production and antioxidant parameters [superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione (GSH), ascorbate (ASA) and malonaldehyde (MDA)] were investigated in Cd-hyperaccumulator Solanum photeinocarpum inoculated with Glomus versiforme BGC GD01C (Gv) in Cd-added soils (0, 5, 10, 20, 40 mg Cd kg-1 soil). Mycorrhizal colonization rates were generally high (from 77% to 94%), and hardly affected by Cd. Gv colonization significantly enhanced P acquisition, growth and total Cd uptakes in both shoots and roots of S. photeinocarpum at all Cd levels. Meanwhile, Gv symbiosis significantly increased Cd concentration in the roots, and decreased Cd concentration in the shoots at all Cd levels, which indicates that Gv could promote phytostabilization by enhancing Cd accumulation in the roots to inhibit its translocation to shoots and the "dilution effects" linked to an increase in plant dry matter yield and a reduced Cd partitioning to shoots. Moreover, the improvement of CAT, POD and APX activities in the leaves of mycorrhizal plants infers that Gv symbiosis helped S. photeinocarpum to relieve oxidative damage to biomolecules in Cd-contaminated soil. The evident decline of MDA content in the leaves of mycorrhizal plants indicates that Gv symbiosis evidently improved antioxidant activities, and the enhancement of PCs production in the leaves of mycorrhizal plants suggests that Gv-inoculated plant may be more efficient to relieve Cd phytotoxicity. Therefore, the possible mechanisms of Cd phytotoxicity alleviation by Gv can be concluded as the decline of Cd concentration in the shoots and the improvement of P acquisition, PCs production and activities of CAT, POD, APX in mycorrhizal plants.


Assuntos
Antioxidantes/metabolismo , Cádmio/metabolismo , Glomeromycota/fisiologia , Fitoquelatinas/metabolismo , Solanum/metabolismo , Cádmio/química , Cádmio/toxicidade , Malondialdeído/metabolismo , Micorrizas/enzimologia , Micorrizas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Solanum/enzimologia , Solanum/crescimento & desenvolvimento , Simbiose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA