Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
Noncoding RNA Res ; 9(1): 262-276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282696

RESUMO

Circular RNAs (circRNAs) and small non-coding RNAs of the head-to-junction circle in the construct play critical roles in gene regulation and are significantly associated with breast cancer (BC). Numerous circRNAs are potential cancer biomarkers that may be used for diagnosis and prognosis. Widespread expression of circRNAs is regarded as a feature of gene expression in highly diverged eukaryotes. Recent studies show that circRNAs have two main biological modulation models: sponging and RNA-binding. This review explained the biogenesis of circRNAs and assessed emerging findings on their sponge function and role as RNA-binding proteins (RBPs) to better understand how their interaction alters cellular function in BC. We focused on how sponges significantly affect the phenotype and progression of BC. We described how circRNAs exercise the translation functions in ribosomes. Furthermore, we reviewed recent studies on RBPs, and post-protein modifications influencing BC and provided a perspective on future research directions for treating BC.

3.
Pharmaceutics ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258090

RESUMO

Breast cancer (BC) has become the fifth most prevalent cause of cancer-related morbidity, attracting significant attention from researchers due to its heightened malignancy and drug resistance. Conventional chemotherapy approaches have proven inadequate in addressing all BC subtypes, highlighting the urgent need for novel therapeutic approaches or drugs. Curcumin (CUR), a phytochemical derived from Curcuma longa (turmeric), has shown substantial potential in inhibiting BC cell migration, metastasis, and proliferation. However, the use of CUR in this context comes with challenges due to its dynamic and easily degradable nature, poor aqueous solubility, low bioavailability, rapid metabolism, and swift systemic elimination, collectively limiting its clinical applications. As such, we provide an overview of the properties, synthesis, and characterization of the hybridization of CUR and its analogue with chemo-drug building blocks. We reviewed research from the last five years on CUR's biogenesis with respect to the regulation of BC, revealing that CUR participates in arresting BC cells in the cell cycle and significantly induces apoptosis in BC cells. Information on the chemotherapeutic and antitumor mechanisms of CUR in BC, including regulation of the cell cycle, increased cell apoptosis, and inhibition of multidrug resistance (MDR), was compiled. Additionally, we provide an overview of CUR loaded into nanomaterials that are cotreated with other chemotherapeutic drugs, such as paclitaxel, thymoquinone, and tamoxifen. In this review, we discuss different types of nanoparticles that can be used for CUR delivery, such as polymeric nanoparticles, carbon nanotubes, and liposomes. By comparing the size, entrapment efficiency, drug-loading capacity, release time, biocompatibility, pharmaceutical scale, and reproducibility of various nanomaterials, we aimed to determine which formulations are better suited for loading CUR or its analogue. Ultimately, this review is expected to offer inspiring ideas, promising strategies, and potential pathways for developing advanced anti-BC strategy nanosystems in clinical practice.

5.
Cell Prolif ; 56(7): e13402, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36696967

RESUMO

Several studies have suggested the potential value of Houttuynia cordata as a therapeutic agent in lung cancer, but direct evidence is still lacking. The study aimed to determine the regulatory impact of a major H. cordata constituent derivative (sodium new houttuyfonate [SNH]) on lncRNA networks in non-small cell lung cancer (NSCLC) to identify new potential therapeutic targets. After exposing NSCLC cells to SNH, we analysed the following: cell death (via flow cytometry, TUNEL and ASC speck formation assays), immune factors (via ELISA), gene transcription (via RT-qPCR), subcellular localisation (via FISH), gene-gene and gene-protein interactions (via dual-luciferase reporter and RNA immunoprecipitation assays, respectively) and protein expression and distribution (via western blotting and immunocytochemistry or immunohistochemistry). In addition, statistical analysis (via one-way ANOVA or unpaired t-tests) was performed. Exposure to SNH promoted NSCLC cell pyroptosis, concomitant with significant up-regulation of TCONS-14036, a novel lncRNA. Mechanistic research demonstrated that TCONS-14036 functions as a competing endogenous (ce)RNA by sequestering microRNA (miR)-1228-5p, thereby up-regulating PRKCDBP-encoding transcript levels. Indeed, PRKCDBP promoted pyroptosis by activating the NLRP3 inflammasome, resulting in CASP1, IL-1ß and GSDMD cleavage. Our findings elucidate the potential molecular mechanisms underlying the ability of SNH to suppress NSCLC growth through activation of pyroptosis via the TCONS-14036/miR-1228-5p/PRKCDBP pathway. Thus, we identify a new potential therapeutic targets for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Piroptose/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral
8.
BMC Cancer ; 22(1): 1317, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527000

RESUMO

BACKGROUND: Acquired chemo-drug resistance constantly led to the failure of chemotherapy for malignant cancers, consequently causing cancer relapse. Hence, identifying the biomarker of drug resistance is vital to improve the treatment efficacy in cancer. The clinical prognostic value of CYP24A1 remains inconclusive, hence we aim to evaluate the association between CYP24A1 and the drug resistance in cancer patients through a meta-analysis approach. METHOD: Relevant studies detecting the expression or SNP of CYP24A1 in cancer patients up till May 2022 were systematically searched in four common scientific databases including PubMed, EMBASE, Cochrane library and ISI Web of Science. The pooled hazard ratios (HRs) indicating the ratio of hazard rate of survival time between CYP24A1high population vs CYP24A1low population were calculated. The pooled HRs and odds ratios (ORs) with 95% confidence intervals (CIs) were used to explore the association between CYP24A1's expression or SNP with survival, metastasis, recurrence, and drug resistance in cancer patients. RESULT: Fifteen studies were included in the meta-analysis after an initial screening according to the inclusion and exclusion criteria. There was a total of 3784 patients pooled from all the included studies. Results indicated that higher expression or SNP of CYP24A1 was significantly correlated with shorter survival time with pooled HRs (95% CI) of 1.21 (1.12, 1.31), metastasis with pooled ORs (95% CI) of 1.81 (1.11, 2.96), recurrence with pooled ORs (95% CI) of 2.14 (1.45, 3.18) and drug resistance with pooled HRs (95% CI) of 1.42 (1.17, 1.68). In the subgroup analysis, cancer type, treatment, ethnicity, and detection approach for CYP24A1 did not affect the significance of the association between CYP24A1 expression and poor prognosis. CONCLUSION: Findings from our meta-analysis demonstrated that CYP24A1's expression or SNP was correlated with cancer progression and drug resistance. Therefore, CYP24A1 could be a potential molecular marker for cancer resistance.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistência a Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Prognóstico , Vitamina D3 24-Hidroxilase
9.
Int Immunopharmacol ; 108: 108914, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35729841

RESUMO

The inflammatory radicular pain induced by lumbar disc herniation (LDH) is a serious problem worldwide. Demethoxycurcumin (DMC) is a yellow pigment derived from turmeric. Although it is considered a safe natural compound for managing inflammation-associated diseases, but the molecular mechanisms of LDH remain to be elucidated. In the current study, DMC reduced the production of IL-1ß, IL-4, and IL-6 in nucleus pulposus (NP) cells subjected to TNF-α-induced inflammation. Moreover, the inhibitory mechanism was activated upon suppression of activation of MAPKs and NF-κB signalling in NP cells. Further experiments with LDH model rats supported the in vitro results. These studies expand our knowledge of the effect of DMC on LDH; DMC may be a viable alternative to the drugs used to treat LDH.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Animais , Diarileptanoides , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/tratamento farmacológico , Deslocamento do Disco Intervertebral/metabolismo , NF-kappa B/metabolismo , Ratos
10.
Stem Cell Res Ther ; 13(1): 197, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551652

RESUMO

BACKGROUND: Chemoresistance often causes the failure of treatment and death of patients with advanced non-small-cell lung cancer. However, there is still no resistance genes signature and available enriched signaling derived from a comprehensive RNA-Seq data analysis of lung cancer patients that could act as a therapeutic target to re-sensitize the acquired resistant cancer cells to chemo-drugs. Hence, in this study, we aimed to identify the resistance signature for clinical lung cancer patients and explore the regulatory mechanism. METHOD: Analysis of RNA-Seq data from clinical lung cancer patients was conducted in R studio to identify the resistance signature. The resistance signature was validated by survival time of lung cancer patients and qPCR in chemo-resistant cells. Cytokine application, small-interfering RNA and pharmacological inhibition approaches were applied to characterize the function and molecular mechanism of EREG and downstream signaling in chemoresistance regulation via stemness. RESULTS: The RTK and vitamin D signaling were enriched among resistance genes, where 6 genes were validated as resistance signature and associated with poor survival in patients. EREG/ERK signaling was activated by chemo-drugs in NSCLC cells. EREG protein promoted the NSCLC resistance to chemo-drugs by increasing stemness genes expression. Additionally, inhibition of EREG/ErbB had downregulated ERK signaling, resulting in decreased expression of stemness-associated genes and subsequently re-sensitized the resistant NSCLC cells and spheres to chemo-drugs. CONCLUSIONS: These findings revealed 6 resistance genes signature and proved that EREG/ErbB regulated the stemness to maintain chemoresistance of NSCLC via ERK signaling. Therefore, targeting EREG/ErbB might significantly and effectively resolve the chemoresistance issue.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Epirregulina/genética , Epirregulina/metabolismo , Epirregulina/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transdução de Sinais
11.
Int J Equity Health ; 19(1): 211, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246458

RESUMO

BACKGROUND: Jiangsu was one of the first four pilot provinces to engage in comprehensive health care reform in China, which has been on-going for the past 5 years. This study aims to evaluate the equity, efficiency and productivity of health care resource allocation in Jiangsu Province using the most recent data, analyse the causes of deficiencies, and discuss measures to solve these problems. METHODS: Data were extracted from the Jiangsu Health/Family Planning Statistical Yearbook (2015-2019) and Jiangsu Statistical Yearbook (2015-2019). The Gini coefficient (G), Theil index (T) and health resource density index (HRDI) were chosen to study the fairness of health resource allocation in Jiangsu Province. Data envelopment analysis (DEA) and the Malmquist productivity index (MPI) were used to analyse the efficiency and productivity of this allocation. RESULTS: From 2014 to 2018, the total amount of health resources in Jiangsu Province increased. The G of primary resource allocation by population remained below 0.15, and that by geographical area was between 0.14 and 0.28; additionally, the G of health financial resources was below 0.26, and that by geographical area was above 0.39. T was consistent with the results for G and Lorenz curves. The HRDI shows that the allocated amounts of health care resources were the highest in southern Jiangsu, except for the number of health institutions. The average value of TE was above 0.93, and the DEA results were invalid for only two cities. From 2014 to 2018, the mean TFPC in Jiangsu was less than 1, and the values exceeded 1 for only five cities. CONCLUSION: The equity of basic medical resources was better than that of financial resources, and the equity of geographical allocation was better than that of population allocation. The overall efficiency of health care resource allocation was high; however, the total factor productivity of the whole province has declined due to technological regression. Jiangsu Province needs to further optimize the allocation and increase the utilization efficiency of health care resources.


Assuntos
Eficiência Organizacional , Alocação de Recursos para a Atenção à Saúde/organização & administração , Alocação de Recursos para a Atenção à Saúde/normas , Equidade em Saúde/normas , China , Humanos
12.
Front Oncol ; 10: 610545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614494

RESUMO

Pyroptosis is a distinct form of programmed cell death in eukaryotic cells that has garnered increasing attention in cancer-related research. Moreover, although miR-21 has been reported as abnormally expressed in colorectal cancer, due to a lack of in-depth research on the transcriptional regulation mechanisms of miR-21, its clinical usage remains limited. Our study is the first, to our knowledge, to compare the clinical manifestations and laboratory phenotypes associated with miR-21-3p and miR-21-5p. Morphologically, the transfection of miR-21-3p or miR-21-5p inhibitors, as well as miR-21-5p mimics into HCT-116 and HT-29 cell lines, induced cell death. Surprisingly, overexpression of miR-21-5p induced cell death more strongly than its knockdown. Mechanistic studies of miR-21-5p overexpression revealed that various inflammatory factors including IL-1ß and IL-18 were released, while pyroptosis-associated mRNAs were upregulated and proteins were activated. Moreover, miR-21-5p was found to act as a downstream factor to significantly and directly regulate transforming growth factor beta-induced (TGFB1). Specifically, miR-21-5p overexpression caused downregulation of TGFBI, which may have led to pyroptosis. Collectively, we revealed that miR-21-5p induces pyroptosis in colorectal cancer via TGFBI regulation, thereby providing important mechanistic insights into its antitumor effects and expanding its potential for clinical applications.

13.
J Cancer ; 10(21): 5283-5298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602279

RESUMO

Objective: In an effort to inform evidence-based guidelines for clinical practice, we performed a meta-analysis to systematically evaluate the safety and efficacy of Kangai injection (KAI) plus platinum-based chemotherapy for stage III/IV non-small cell lung cancer (NSCLC). Methods: Randomized controlled trials (RCTs) comparing KAI plus platinum-based chemotherapy (experimental group) to chemotherapy alone (control group) were electronically retrieved from the Cochrane Library, PubMed, EMbase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), Chinese Biological Medicine (CBM) Database, Wanfang Database, and the VIP Database for Chinese Technical Periodicals. RCTs published from the date of inception to July 5, 2018, were included. All trials were assessed for methodological quality in accordance with the Cochrane Reviewer's Handbook for Systematic Reviews of Intervention. Meta-analysis was performed using RevMan5.3 Software and Comprehensive Meta-Analysis (CMA) 2.0. Results: The final analysis included 35 RCTs involving 2,618 patients. Our meta-analysis revealed that KAI combined with platinum-based chemotherapy was associated with significantly greater objective response rate (ORR) (RR=1.36, 95% CI: 1.25-1.49, P<0.00001) and disease control rate (DCR) (RR=1.14, 95% CI: 1.09-1.18, P<0.00001), improvements in quality of life (QOL) (RR=1.75, 95% CI: 1.59-1.93, P<0.00001), and decreases in the incidence of gastrointestinal reactions (RR=0.64, 95% CI: 0.54-0.77, P<0.00001), leukocytopenia (RR=0.54, 95% CI: 0.46-0.63, P<0.00001) and thrombocytopenia (RR=0.52, 95% CI: 0.36-0.76, P=0.0007) when compared with chemotherapy alone. In addition, combined treatment was associated with greater regulation of tumor immune function, as indicated by increases in the proportion of NK, CD3 + , and CD4 + cells (MD=2.27, 95% CI: 1.18-3.36, P<0.0001; MD=12.86, 95% CI: 11.64-14.08, P<0.00001; and MD=5.48, 95% CI: 2.68-8.28, P=0.0001) and decreases in the percentage of CD8 + cells (MD= -2.37, 95% CI from -4.51 to -0.23, P=0.03). Conclusions: From the available evidence, our results indicate that KAI plus platinum-based chemotherapy could be more effective in improving clinical efficacy, decreasing the incidence of adverse reactions and regulating the tumor immune function than chemotherapy alone in the treatment of stage III/IV NSCLC. Nevertheless, considering the limitations of the included studies, rigorous designed, high-quality, multicenter clinical trials are still need to further confirm the results.

14.
J Cancer ; 10(13): 2849-2856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281461

RESUMO

Ophiopogonin-B (OP-B) has been reported to suppress metastasis and angiogenesis of adenocarcinoma A549 cells in vitro and in vivo. More and more evidences indicate that inflammatory microenvironment facilitates tumor metastasis. Digital Gene Expression (DGE) analysis of non-small cell lung cancer (NSCLC) cell lines showed that OP-B downregulated the expression of linc00668, which promoted progression of cancer. Herein, we simulated the inflammatory microenvironment by co-culturing A549 cells with LPS-treated THP-1 cells and found that the level of linc00668 increased significantly in the mock group, while OP-B treatment inhibited the level of linc00668 and reversed epithelial-mesenchymal transition (EMT) induced by linc00668. In addition, overexpression of linc00668 in A549 cells suppressed the expression of E-cadherin and induced expression of N-cadherin, while OP-B treatment reversed these changes. Bioinformatic prediction and dual-luciferase reporter gene assay validated that linc00668 sponge miR-432-5p and at last acted on EMT to execute the anti-migration function of A549 cells under inflammatory microenvironment. Taken together, OP-B inhibits metastasis of A549 cells via the linc00668/miR-432-5p/EMT axis.

15.
J Exp Clin Cancer Res ; 38(1): 155, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971296

RESUMO

BACKGROUND: As most lung cancer patients present with invasive, metastatic disease, it is vital to investigate anti-metastatic treatments for non-small cell lung cancer (NSCLC). Houttuynia cordata is commonly used as a Chinese anticancer medicine in the clinic, and sodium new houttuyfonate (SNH), a main compound of this herb, has long been found to have antibiotic effects, although its anticancer effects have not been investigated. Here, we tried to address this lack of research from the perspective of the competing endogenous RNA (ceRNA) theory. METHODS: The effects of SNH on NSCLC cells were analysed with Cell Counting Kit-8 assays and colony formation assays. In addition, transwell assays and wound healing assays were used to determine the effects of SNH on migration and invasion in NSCLC cells. The levels of key genes and proteins were examined by quantitative real-time PCR, western blotting, immunofluorescence staining and IHC staining. Through transcriptome screening and digital gene expression profiling, Linc00668 was identified to be regulated by SNH. Dual-luciferase reporter assays and RNA immunoprecipitation assays verified the binding efficiency between miR-147a and Linc00668 or Slug. RESULTS: In the present study, SNH regulated NSCLC cells in multiple ways, the most prominent of which was suppressing the expression of Linc00668, which was indicated to promote migration and invasion in NSCLC cells. Functional studies demonstrated that Linc00668 acted as a ceRNA by sponging miR-147a to further regulate Slug mRNA levels, thereby influencing the progression of the epithelial-mesenchymal transition. Consistently, the results of in vivo animal models showed that SNH depressed Linc00668 and suppressed the metastasis of NSCLC. CONCLUSIONS: SNH suppressed metastasis of NSCLC cells and the mechanism may involve with the Linc00668/miR-147a/Slug axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Houttuynia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica , Transfecção
16.
J Cancer ; 9(17): 3084-3092, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210631

RESUMO

The tumor microenvironment (tumor cells are located in the internal and external environment) is vital for the occurrence, growth and metastasis of tumors. An increasing number of studies have shown that exosomes are closely related to the tumor microenvironment. The mechanisms involved, however, are unclear. The focus of this review is on the exosome-related tumor microenvironment and other relevant factors, such as hypoxia, inflammation and angiogenesis. Many studies have suggested that exosomes are important mediators of metastasis, angiogenesis, and immune modulation in the tumor microenvironment. Additionally, exosomes can be isolated from bodily fluids of cancer patients, including urine, blood, saliva, milk, tumor effusion, cerebrospinal fluid, amniotic fluid and so on. Consequently, exosomes are potential biomarkers for clinical predictions and are also good drug carriers because they can cross the biofilm without triggering an immune response. Collectively, these findings illustrate that exosomes are crucial for developing potential targets for a new generation of pharmaceutical therapies that would improve the tumor microenvironment.

17.
Oncol Rep ; 40(3): 1339-1347, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29956803

RESUMO

Lung adenocarcinoma is the most common metastatic cancer, and is associated with high patient mortality. Therefore, investigation of anti­metastatic treatments for lung adenocarcinoma is crucial. Ophiopogonin B (OP­B) is a bioactive component of Radix Ophiopogon Japonicus, which is often used in Chinese traditional medicine to treat pulmonary disease. Screening of transcriptome and digital gene expression (DGE) profiling data in NSCLC cell lines showed that OP­B regulated the epithelial­mesenchymal transition (EMT) pathway in A549 cells. Further results showed that 10 µmol/l OP­B downregulated EphA2 expression and phosphorylation (Ser897) in A549 cells but upregulated them in NCI­H460 cells. Meanwhile, the Ras/ERK pathway was unaffected in A549 cells and stimulated in NCI­H460 cells. More importantly, detection of the EMT pathway showed that OP­B treatment increased the epithelial markers ZO­1 and E­cadherin and decreased the expression of the mesenchymal marker N­cadherin and the transcriptional repressors Snail, Slug and ZEB1. Furthermore, through Transwell migration and scratch wound healing assays, we found that 10 µmol/l OP­B significantly reduced the invasion and migration of A549 cells. In vivo, we found that 75 mg/kg OP­B inhibited A549 cell metastasis in a pulmonary metastasis nude mouse model. In addition, we also found that 10 µmol/l OP­B significantly inhibited tube formation in EA.hy926 cells. The expression of VEGFR2 and Tie­2, the phosphorylation of Akt (S473) and PLC (S1248), and the levels of EphA2 and phosphorylated EphA2 (S897) were all inhibited by OP­B in this cell line. In vivo, using a Matrigel plug assay, we found that OP­B inhibited angiogenesis and the hemoglobin content of A549 transplanted tumors. Taken together, OP­B inhibited the metastasis and angiogenesis of A549 cells by inhibiting EphA2/Akt and the corresponding pathway. The investigation gives new recognition to the anticancer mechanism of OP­B in NSCLC and this compound is a promising inhibitor of metastasis and angiogenesis of lung adenocarcinoma cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/secundário , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphA2/metabolismo , Saponinas/farmacologia , Espirostanos/farmacologia , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
PLoS One ; 8(8): e74826, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24013271

RESUMO

Vascular smooth muscle cell (VSMC) proliferation and migration triggered by inflammatory stimuli contributes importantly to the pathogenesis of atherosclerosis and restenosis. On the other hand, genipin, an aglycon of geniposide, exhibits diverse pharmacological functions such as antitumor and anti-inflammatory effects. The protective effects of genipin on the cardiovascular system have also been reported. However, the molecular mechanism involved remains unknown. This study aimed to elucidate the precise function of genipin in VSMCs, focusing particularly on the role of heme oxygenase-1 (HO-1), a potent anti-inflammatory enzyme. We found that pretreatment of genipin induced HO-1 mRNA and protein levels, as well as its activity in VSMCs. Genipin inhibited TNF-α-induced VSMC proliferation and migration in a dose-dependent manner. At the molecular level, genipin prevented ERK/MAPK and Akt phosphorylation while left p38 MAPK and JNK unchanged. Genipin also blocked the increase of ROS generation induced by TNF-α. More importantly, the specific HO-1 siRNA partially abolished the beneficial effects of genipin on VSMCs. These results suggest that genipin may serve as a novel drug in the treatment of these pathologies by inducing HO-1 expression/activity and subsequently decreasing VSMC proliferation and migration.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colagogos e Coleréticos/farmacologia , Heme Oxigenase-1/biossíntese , Iridoides/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA