Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(12): e1908242, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32077189

RESUMO

Ternary two-dimensional (2D) semiconductors with controllable wide bandgap, high ultraviolet (UV) absorption coefficient, and critical tuning freedom degree of stoichiometry variation have a great application prospect for UV detection. However, as-reported ternary 2D semiconductors often possess a bandgap below 3.0 eV, which must be further enlarged to achieve comprehensively improved UV, especially deep-UV (DUV), detection capacity. Herein, sub-one-unit-cell 2D monolayer BiOBr nanoflakes (≈0.57 nm) with a large size of 70 µm are synthesized for high-performance DUV detection due to the large bandgap of 3.69 eV. Phototransistors based on the 2D ultrathin BiOBr nanoflakes deliver remarkable DUV detection performance including ultrahigh photoresponsivity (Rλ , 12739.13 A W-1 ), ultrahigh external quantum efficiency (EQE, 6.46 × 106 %), and excellent detectivity (D*, 8.37 × 1012 Jones) at 245 nm with a gate voltage (Vg ) of 35 V attributed to the photogating effects. The ultrafast response (τrise = 102 µs) can be achieved by utilizing photoconduction effects at Vg of -40 V. The combination of photocurrent generation mechanisms for BiOBr-based phototransistors controlled by Vg can pave a way for designing novel 2D optoelectronic materials to achieve optimal device performance.

2.
ACS Appl Mater Interfaces ; 11(43): 40204-40213, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31599148

RESUMO

Methylammonium lead halide perovskites have gained a lot of attention because of their remarkable physical properties and potential for numerous (opto)electronic applications. Here, high-performance photodetectors based on CH3NH3PbI3 (MAPbI3)/CdS heterostructures are demonstrated. The resulting self-powered MAPbI3/CdS photodetectors show excellent operating characteristics including a maximum detectivity of 2.3 × 1011 Jones with a responsivity of 0.43 A/W measured at 730 nm. A temporal response time of less than 14 ms was achieved. The mechanisms of charge separation and transport at the interface of the MAPbI3/CdS junction were investigated via conductive atomic force microscopy (AFM) and photoconductive AFM. Obtained results show that grain boundaries exhibit higher photocurrent than flat regions of the top perovskite layer, which indicates that excitons preferentially separate at the grain boundaries of the perovskite thin film, that is, at the edges of the MAPbI3 crystals. The study of the photoelectric mechanism at the nanoscale suggests the device performance could potentially be fine-tuned through grain boundary engineering, which provides essential insights for the fabrication of the high-performance photodetector. The demonstrated self-powered photodetector is promising for numerous applications in low-energy consumption optoelectronic devices.

3.
Adv Mater ; 27(7): 1201-6, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25545177

RESUMO

A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.

4.
Adv Mater ; 25(29): 3994-4000, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23661582

RESUMO

A new type of absorber, a four-tined fish-spear-like resonator (FFR), constructed by the two-photon polymerization process, is reported. An absorbance of more than 90% is experimentally realized and the resonance occurs in the space between the tines. Since a continuous layer of metallic thin film covers the structure, it is perfectly thermo- and electroconductive, which is the mostly desired feature for many applications.


Assuntos
Lentes , Membranas Artificiais , Metais/química , Metais/efeitos da radiação , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Absorção , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teste de Materiais , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA