Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 35(2): 93-112, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32757619

RESUMO

Aims: A high-salt diet can aggravate oxidative stress, and renal fibrosis via the brain and renal renin-angiotensin system (RAS) axis in chronic kidney disease (CKD) rats. (Pro)renin receptor (PRR) plays a role in regulating RAS and oxidative stress locally. However, whether central PRR regulates salt-induced renal injury in CKD remains undefined. Here, we hypothesized that the reduction of central PRR expression could ameliorate central lesions and thereby ameliorate renal injury in high-salt-load CKD rats. Results: We investigated RAS, sympathetic nerve activity, oxidative stress, inflammation, and tissue injury in subfornical organs and kidneys in high-salt-load 5/6 nephrectomy CKD rats after the silencing of central PRR expression by intracerebroventricular lentivirus-RNAi. We found that the sympathetic nerve activity was reduced, and the levels of inflammation and oxidative stress were decreased in both brain and kidney. Renal injury and fibrosis were ameliorated. To explore the mechanism by which central inhibition of PRR expression ameliorates kidney damage, we blocked central MAPK/ERK1/2 and PI3K/Akt signaling pathways as well as angiotensin converting enzyme 1-angiotensin II-angiotensin type 1 receptors (ACE1-Ang II-AT1R) axis. Salt-induced overexpression of renal RAS, inflammation, oxidative stress, and fibrosis in CKD rats were prevented by central blockade of the pathways. Innovation: This study provides new insights into the mechanisms underlying salt-induced kidney damage. Targeting central PRR or PRR-mediated signaling pathway may be a novel strategy for the treatment of CKD. Conclusions: These results suggested that the silencing of central PRR expression ameliorates salt-induced renal injury in CKD through Ang II-dependent and -independent pathways.


Assuntos
Vetores Genéticos/administração & dosagem , Receptores de Superfície Celular/genética , Insuficiência Renal Crônica/terapia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sódio na Dieta/efeitos adversos , ATPases Vacuolares Próton-Translocadoras/genética , Angiotensina II/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Vetores Genéticos/genética , Infusões Intraventriculares , Lentivirus/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Nefrectomia/efeitos adversos , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
Am J Transl Res ; 11(5): 2925-2939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31217864

RESUMO

The diabetes mellitus has posed a grave threat on human health, and is bound to result in renal trauma by uncertain mechanisms. Increasing evidences indicated that the activation of the renin-angiotensin system plays a pivotal role during the progression of diabetic kidney disease. In streptozotocin (STZ)-induced type 1 diabetic rat model, the losartan (a selective angiotensin II type 1 (AT1) receptor antagonist) and tempol (4-Hydroxy-TEMPO, reactive oxygen species scavenger) were administrated through intracerebroventricular injection or intragastric gavage. Intracerebroventricular administration of clonidine or renal denervation was carried out to block sympathetic nerve traffic. Compared with non-diabetic rats, the reno-cerebral axis was over-activated, including activity of renin-angiotensin system (RAS), oxidative stress, and sympathetic activity in diabetic rats. Central blockade of RAS inhibited the central oxidative stress and sympathetic activity, which led to decrease of intrarenal RAS activity and oxidative stress. Meanwhile, central administration of tempol reduced brain RAS, thus downregulated renal RAS activity and oxidative stress. Importantly, oral administration by intragastric gavage of high dose of losartan and tempol achieved the same effect. The results suggested that there is a cross-talk between renal and cerebral RAS/reactive oxygen species, contributing to the progression of diabetic kidney disease. The subfornical organ, paraventricular nucleus, and supraoptic nucleus in the forebrain also play a key role in development and progression of renal trauma through reno-cerebral reflex axis.

3.
Sci Rep ; 6: 35906, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775022

RESUMO

Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity.


Assuntos
Córtex Renal/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Proteoma/análise , Sais/administração & dosagem , Animais , Cromatografia Líquida , Dieta/métodos , Modelos Animais de Doenças , Proteômica , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
4.
PLoS One ; 9(6): e100331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945867

RESUMO

Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model) or sham operation were treated for 2 weeks with a normal-(0.4% NaCl), or high-salt (4% NaCl) diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54%) phosphopeptides upregulated and 76 (46%) phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49%) phosphopeptides and downregulation of 88 (51%) phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed.


Assuntos
Falência Renal Crônica/metabolismo , Miocárdio/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Dieta , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Lamina Tipo A/metabolismo , Masculino , Nefrectomia , Fosfopeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteômica , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA