Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(16): 4276-4285, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607948

RESUMO

Pentagonal palladium diselenide (PdSe2) stands out for its exceptional optoelectronic properties, including high carrier mobility, tunable bandgap, and anisotropic electronic and optical responses. Herein, we systematically investigate photocarrier dynamics in PdSe2 ribbons using polarization-resolved optical pump-probe spectroscopy. In thin PdSe2 ribbons with a semiconductor phase, the photocarrier dynamics are found to be dominated by intraband hot-carrier cooling, interband recombination, and the exciton effect, showing weak crystalline orientation dependences. Conversely, in thick semimetal-phase PdSe2 ribbons, the photocarrier relaxations governed by the electron-optical/acoustic phonon scattering strongly depend on the sample orientation, albeit with a degradation in in-plane anisotropy following hot-carrier cooling. Furthermore, we analyze the correlations between photocarrier dynamics and anisotropic energy dispersions of electronic structures across a wide range in k space, as well as the contributions from the anisotropic electron-phonon couplings. Our study provides crucial insights for developing polarization-sensitive photoelectronic devices based on PdSe2.

2.
Plants (Basel) ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337938

RESUMO

Transcriptome analysis, relying on the cutting-edge sequencing of cDNA libraries, has become increasingly prevalent within functional genome studies. However, the dependence on cDNA in most RNA sequencing technologies restricts their ability to detect RNA base modifications. To address this limitation, the latest Oxford Nanopore Direct RNA Sequencing (ONT DRS) technology was employed to investigate the transcriptome of maize seedling roots under salt stress. This approach aimed to unveil both the RNA transcriptional profiles and alterations in base modifications. The analysis of the differential expression revealed a total of 1398 genes and 2223 transcripts that exhibited significant variation within the maize root system following brief exposure to salt stress. Enrichment analyses, such as the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway assessments, highlighted the predominant involvement of these differentially expressed genes (DEGs) in regulating ion homeostasis, nitrogen metabolism, amino acid metabolism, and the phytohormone signaling pathways. The protein-protein interaction (PPI) analysis showed the participation of various proteins related to glycolytic metabolism, nitrogen metabolism, amino acid metabolism, abscisic acid signaling, and the jasmonate signaling pathways. It was through this intricate molecular network that these proteins collaborated to safeguard root cells against salt-induced damage. Moreover, under salt stress conditions, the occurrence of variable shear events (AS) in RNA modifications diminished, the average length of poly(A) tails underwent a slight decrease, and the number of genes at the majority of the variable polyadenylation (APA) sites decreased. Additionally, the levels of N5-methylcytosine (m5C) and N6-methyladenosine (m6A) showed a reduction. These results provide insights into the mechanisms of early salt tolerance in maize.

3.
J Hazard Mater ; 465: 133528, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237437

RESUMO

Cadmium (Cd) is a heavy metal and a toxic substance. Soil Cd pollution has emerged as a significant environmental issue that jeopardizes both the safety of agricultural products and human health. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) has been identified as a crucial factor in Cd stress and a series of defence mechanisms. However, the mechanism through which PRL1 mediates its downstream signalling has remained poorly understood. Here, we discovered a prl1-2 suppressor (sup8) for prl1-2 that complemented the defective development phenotype of prl1-2 under Cd stress. Gene cloning revealed a mutation in the C2H2 transcription factor ZAT17 as the basis for the sup8 phenotype. Genetic and biochemical studies indicated that ZAT17 acts as a negative regulator of Cd tolerance. Transcriptome analysis revealed that ZAT17 influences the alternative splicing (AS) process of multiple Cd-responsive genes by interacting with members of the MAC splicing complex, including PRL1 and CDC5. In conclusion, the identification of the novel gene ZAT17 enriches the understanding of the Cd stress response pathway and provides a valuable candidate locus for breeding Cd-resistant plant varieties.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cádmio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
4.
Phys Chem Chem Phys ; 25(16): 11311-11315, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37067513

RESUMO

Two-dimensional (2D) 1T-PtS2 has been drawing considerable attention due to its highly layer-dependent bandgap, high carrier mobility, superior air stability, etc. However, the growth of 2D PtS2 with uniform thickness and controllable shape remains an immense challenge. Herein, the uniform bilayer (2L) 1T-PtS2 single crystals are controllably grown on mica using chemical vapor deposition for the first time. The variable morphology from triangular to hexagonal can be obtained by regulating growth temperature. Significantly, the 2L PtS2 flakes show a good electrocatalytic hydrogen evolution reaction (HER) property with an overpotential of 184 mV at 10 mA cm-2, Tafel slope of 81 mV dec-1, exchange current density of 43 µA cm-2, and outstanding stability. This work manifests that 2D PtS2 is a promising candidate for HER applications.

5.
Phys Chem Chem Phys ; 25(13): 9548-9558, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939192

RESUMO

The rapid rise of two-dimensional (2D) materials has aroused increasing interest in the fields of microelectronics and optoelectronics; various types of 2D van der Waals heterostructures (vdWHs), especially those based on MoS2, have been widely investigated in theory and experiment. However, the interfacial properties of MoS2 and the uncommon crystal surface of traditional three-dimensional (3D) metals are yet to be explored. In this paper, we studied heterostructures composed of MoS2 and metal(001) slabs, based on the first-principles calculations, and we uncovered that MoS2/Au(001) and MoS2/Ag(001) vdWHs reveal Schottky contacts, and MoS2/Cu(001) belongs to Ohmic contact and possesses ultrahigh electron tunneling probability at the equilibrium distance. Thus, the MoS2/Cu(001) heterostructure exhibits the best contact performance. Further investigations demonstrate that external longitudinal strain can modulate interfacial contact to engineer the Schottky-Ohmic contact transition and regulate interfacial charge transport. We believe that it is a general strategy to exploit longitudinal strain to improve interfacial contact performance to design and fabricate a multifunctional MoS2-based electronic device.

6.
ACS Nano ; 17(1): 363-371, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36576433

RESUMO

Two-dimensional (2D) transition metal dihalides (TMDHs) have been receiving extensive attention due to their diversified magnetic properties and promising applications in spintronics. However, controlled growth of 2D TMDHs remains challenging owing to their extreme sensitivity to atmospheric moisture. Herein, using a home-built nitrogen-filled interconnected glovebox system, a universal chemical vapor deposition synthesis route of high-quality 2D TMDH flakes (1T-FeCl2, FeBr2, VCl2, and VBr2) by reduction of their trihalide counterparts is developed. Representatively, ultrathin (∼8.6 nm) FeCl2 flakes are synthesized on SiO2/Si, while on graphene/Cu foil the thickness can be down to monolayer (1L). Reflective magnetic circular dichroism spectroscopy shows an interlayer antiferromagnetic ordering of FeCl2 with a Neel temperature at ∼17 K. Scanning tunneling microscopy and spectroscopy further identify the atomic-scale structures and band features of 1L and bilayer FeCl2 on graphene/Cu foil.

7.
Nanoscale ; 14(15): 5851-5858, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35357377

RESUMO

The research on two-dimensional (2D) van der Waals (vdW) magnets has promoted the development of ultrahigh-density data storage and nanoscale spintronic devices. However, the soft ferromagnetic behavior in most 2D magnets, which means the absence of remanent magnetization, severely limits their applications in realistic devices. Here, we report a layer-controlled ferromagnetic behavior in atomically thin CrSiTe3 flakes, where a transition from the soft to the hard ferromagnetic state occurs as the thickness of samples decreases down to several nanometers. Phenomenally, in contrast to the negligible hysteresis loop in the bulk counterparts, atomically thin CrSiTe3 shows a rectangular loop with finite magnetization and coercivity as the thickness decreases down to ∼8 nm, indicative of a single-domain and out-of-plane ferromagnetic order. We find that the stray field is weakened with decreasing thickness, which suppresses the formation of the domain wall. In addition, thickness-dependent ferromagnetic properties also reveal a crossover from 3 dimensional to 2 dimensional Ising ferromagnets, accompanied by a drop of the Curie temperature from 33 K for bulk to ∼17 K for the 4 nm sample. Our study paves the way towards exploring and learning much more about atomically thin and layered intrinsic ferromagnets.

8.
ACS Nano ; 15(10): 16760-16768, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34549939

RESUMO

Van der Waals heterostructures composed of different two-dimensional films offer a unique platform for engineering and promoting photoelectric performances, which highly demands the understanding of photocarrier dynamics. Herein, large-scale vertically stacked heterostructures with MoS2 and ReSe2 monolayers are fabricated. Correspondingly, the carrier dynamics have been thoroughly investigated using different ultrafast spectroscopies, including Terahertz (THz) emission spectroscopy, time-resolved THz spectroscopy (TRTS), and near-infrared optical pump-probe spectroscopy (OPPS), providing complementary dynamic information for the out-of-plane charge separation and in-plane charge transport at different stages. The initial charge transfer (CT) within the first 170 fs, generating a transient directional current, is directly demonstrated by the THz emissions. Furthermore, the TRTS explicitly unveils an intermediate free-carrier relaxation pathway, featuring a pronounced augmentation of THz photoconductivity compared to the isolated ReSe2 layer, which likely contains the evolution from immigrant hot charged free carriers to bounded interlayer excitons (∼0.7 ps) and the surface defect trapping (∼13 ps). In addition, the OPPS reveals a distinct enhancement in the saturable absorption along with long-lived dynamics (∼365 ps), which originated from the CT and interlayer exciton recombination. Our work provides comprehensive insight into the photocarrier dynamics across the charge separation and will help with the development of optoelectronic devices based on ReSe2-MoS2 heterostructures.

9.
Small ; 16(19): e2000754, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285616

RESUMO

Uncovering the thickness-dependent electronic property and environmental stability for 2D materials are crucial issues for promoting their applications in high-performance electronic and optoelectronic devices. Herein, the extrahigh air stability and giant tunable electronic bandgap of chemical vapor deposition (CVD)-derived few-layer PdSe2 on Au foils, by using scanning tunneling microscope/spectroscopy (STM/STS), are reported. The robust stability of 2D PdSe2 is uncovered by the observation of nearly defect/adsorption-free atomic lattices on long-time air-exposed samples. A one-to-one correspondence between the electronic bandgap (from ≈1.15 to ≈0 eV) and thickness of PdSe2 /Au (from bilayer to bulk) is established. It is also revealed that few-layer semiconducting PdSe2 flakes present zero-gap edges, induced by hybridization of Pd 4d and Se 4p orbitals. This work hereby provides straightforward evidence for the thickness-tunable electronic property and air stability of 2D semiconductors, thus shedding light on their applications in next-generation electronic devices.

10.
J Phys Condens Matter ; 32(19): 195501, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31958781

RESUMO

Both 2D perovskite Cs2PbI4 and phosphorus are significant optoelectronic semiconductor materials, the optical-electrical characters between both contact interfaces are interesting topics. In present work, we demonstrate comparative investigation of optoelectronic properties for two kinds of electrical contact interfaces. i.e. Pb-I and Cs-I interfaces with black phosphorus contacts. The carrier transport, charge transferring and optical properties for both cases are investigated by using first principle calculation. Both contact interfaces exhibit type II band alignment with direct band gap. Charge carrier migration from Cs-I interface to black phosphorus is more strong than that of Pb-I interface by considering differential charge density and bader charge between distinct electrical contact interfaces. Besides, electron-hole effective masses of heterojunctions for both cases along different direction are investigated. Optical absorption coefficients of both cases are compared with those of free-standing Cs2PbI4 and black phosphorus in the visible spectrum. We systematically compared advantages and disadvantages of two kinds of contact interfaces for photovoltaic application, and the results reveal interfacial engineering of 2D heterojunction plays a important role in tuning optoelectronic properties.

11.
ACS Appl Mater Interfaces ; 11(51): 48221-48229, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31782301

RESUMO

Vertical heterostructures formed by stacks of two-dimensional (2D) layered materials with disparate electronic properties have attracted tremendous attention for their versatile applications. The targeted fabrication of such vertical stacks with clean interfaces and a specific stacking sequence remains challenging. Herein, we design a two-step chemical vapor deposition route for the direct synthesis of unconventional graphene/PtSe2 vertical stacks (Gr/PtSe2) on conductive Au foil substrates. Monolayer PtSe2 (1L-PtSe2) was detected to preferentially grow at the interface of the predeposited Gr layer and the Au foil substrate rather than on the Gr surface. The concurrent effect from the strong interaction of PtSe2/Au and the space confinement effect of Gr/Au are proposed to be the essential mechanisms. Particularly, this unique growth system allows us to uncover the intrinsic property of 1L-PtSe2 and the interfacial coupling effect using scanning tunneling microscopy/spectroscopy. Our work should hereby enable significant advances in the synthesis of 2D-based vertical heterostructures and in the exploration of their intrinsic interface properties.

12.
Small ; 15(45): e1902789, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31544354

RESUMO

Palladium diselenide (PdSe2 ) is an emerging 2D layered material with anisotropic optical/electrical properties, extra-high carrier mobility, excellent air stability, etc. So far, ultrathin PdSe2 is mainly achieved via mechanical exfoliation from its bulk counterpart, and the direct synthesis is still challenging. Herein, the synthesis of ultrathin 2D PdSe2 on conductive Au foil substrates via a facile chemical vapor deposition route is reported. Intriguingly, an anisotropic growth behavior is detected from the evolution of ribboned flakes with large length/width ratios, which is well explained from the orthorhombic symmetry of PdSe2 . A unique even-layered growth mode from 2 to 20 layers is also confirmed by the perfect combination of onsite scanning tunneling microscopy characterizations, through deliberately scratching the flake edge to expose both even and odd layers. This even-layered, ribboned 2D material is expected to serve as a perfect platform for exploring unique physical properties, and for developing high-performance electronic and optoelectronic devices.

13.
J Am Chem Soc ; 141(47): 18694-18703, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31558019

RESUMO

Two-dimensional (2D) metallic transition metal dichalcogenides (MTMDCs) have attracted tremendous interest due to their intriguing physical properties and broad application potential. However, batch production of high-quality 2D MTMDCs based on existing synthesis on 2D surfaces remains a huge challenge. Herein, a universal synthetic route for the scalable synthesis of high-quality 2D MTMDC (e.g., TaS2, V5S8, and NbS2) nanosheets using microcrystalline NaCl crystals as templates via a facile chemical vapor deposition method is reported. Obviously, this synthetic route is perfectly compatible with a facile water dissolution-filtration process for obtaining high-purity MTMDC nanosheet powders. Representatively, a thickness-uniform 1T-TaS2 nanosheet product can be achieved that shows unexceptionable dispersibility in ethanol, which allows its assembly onto arbitrary substrates/electrodes for high-performance energy-related applications, herein serving as a high-performance electrocatalyst for the hydrogen evolution reaction. This work sheds light on the batch production, green transfer, and energy-related application of 2D MTMDC materials.

14.
ACS Nano ; 13(3): 3649-3658, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30786211

RESUMO

Atomically thin transition-metal dichalcogenides (TMDCs) have received substantial interest due to their typical thickness-dependent optical and electronic properties and related applications in optoelectronics. However, the large-scale, thickness-tunable growth of such materials is still challenging. Herein, we report a fast growth of thickness-tunable wedding-cake-like MoS2 flakes on 6-in. soda-lime glass by using NaCl-coated Mo foils as metal precursors. The MoS2 thicknesses are tuned from one layer (1L) to >20L by controlling the concentrations of NaCl promoter. To attest to the ultrahigh crystal quality, related devices based on 1L-multilayer MoS2 lateral junctions have been constructed and display a relatively high rectification ratio (∼103) and extra high photoresponsitivity (∼104 A/W). Thanks to the scalable sizes, uniform distributions of the flakes and homogeneous optical properties, the applications in ultraviolet (UV) irradiation filtering eyewear are also demonstrated. Our work should hereby propel the scalable production of layer-controlled TMDC materials as well as their optical and optoelectrical applications.

15.
Nanotechnology ; 30(18): 182002, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30650401

RESUMO

Two-dimensional (2D) metallic transition metal dichalcogenides (MTMDCs), the complement of 2D semiconducting TMDCs, have attracted extensive attentions in recent years because of their versatile properties such as superconductivity, charge density wave, and magnetism. To promote the investigations of their fantastic properties and broad applications, the preparation of large-area, high-quality, and thickness-tunable 2D MTMDCs has become a very urgent topic and great efforts have been made. This topical review therefore focuses on the introduction of the recent achievements for the controllable syntheses of 2D MTMDCs (VS2, VSe2, TaS2, TaSe2, NbS2, NbSe2, etc). To begin with, some earlier developed routes such as chemical vapor transport, mechanical/chemical exfoliation, as well as molecular beam epitaxy methods are briefly introduced. Secondly, the scalable chemical vapor deposition methods involved with two sorts of metal-based feedstocks, including transition metal chlorides and transition metal oxidations mixed with alkali halides, are discussed separately. Finally, challenges for the syntheses of high-quality 2D MTMDCs are discussed and the future research directions in the related fields are proposed.

16.
Nanotechnology ; 30(3): 034002, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30422817

RESUMO

Monolayer molybdenum sulfide (MoS2), a typical semiconducting transition metal dichalcogenide, has emerged as a perfect platform for next-generation electronics and optoelectronics due to its sizeable band gap and strong light-matter interactions. Nevertheless, the controlled growth of a monolayer MoS2 single-crystal with a large-domain size and high crystal quality still faces great challenges. Herein, we demonstrate the fast growth of a large-domain monolayer MoS2 on the c-plane sapphire substrate with the assistance of sodium chloride (NaCl) crystals as the intermediate promoter. Particularly, the volatilization temperature of the NaCl crystal and the growth temperature of MoS2 are established to be the key parameters that influence the growth efficiency of MoS2 at an optimized growth condition. Monolayer triangular MoS2 domain with an edge length ∼300 µm is obtained within 1 min, featured with a growth rate ∼5 µm s-1. The Na element from the NaCl crystal is found to be able to facilitate the two dimensional growth of monolayer MoS2. This work thus offers novel insights into the high-efficiency production of large-domain monolayer MoS2 on insulating growth substrates.

17.
ACS Nano ; 12(10): 10095-10103, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30226744

RESUMO

Rhenium diselenide (ReSe2) is a unique transition-metal dichalcogenide (TMDC) possessing distorted 1T structure with a triclinic symmetry, strong in-plane anisotropy, and promising applications in optoelectronics and energy-related fields. So far, the structural and physical properties of ReSe2 are mainly uncovered by transmission electron microscopy and spectroscopy characterizations. Herein, by combining scanning tunneling microscopy and spectroscopy (STM and STS) with first-principles calculations, we accomplish the on-site atomic-scale identification of the top four non-identical Se atoms in a unit cell of the anisotropic monolayer ReSe2 on the Au substrate. According to STS and photoluminescence results, we also determine the quasiparticle and optical band gaps as well as the exciton binding energy of monolayer ReSe2. In particular, we detect a perfect lattice coherence and an invariable band gap across the mirror-symmetric grain boundaries in monolayer and bilayer ReSe2, which considerably differ from the traditional isotropic TMDCs featured with defect structures and additional states inside the band gap. Such essential findings should deepen our understanding of the intrinsic properties of two-dimensional anisotropic materials and provide fundamental references for their applications in related fields.

18.
Nanotechnology ; 29(20): 204003, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29498623

RESUMO

Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77-290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

19.
Nat Commun ; 9(1): 979, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515118

RESUMO

Monolayer transition metal dichalcogenides (TMDs) have become essential two-dimensional materials for their perspectives in engineering next-generation electronics. For related applications, the controlled growth of large-area uniform monolayer TMDs is crucial, while it remains challenging. Herein, we report the direct synthesis of 6-inch uniform monolayer molybdenum disulfide on the solid soda-lime glass, through a designed face-to-face metal-precursor supply route in a facile chemical vapor deposition process. We find that the highly uniform monolayer film, with the composite domains possessing an edge length larger than 400 µm, can be achieved within a quite short time of 8 min. This highly efficient growth is proven to be facilitated by sodium catalysts that are homogenously distributed in glass, according to our experimental facts and density functional theory calculations. This work provides insights into the batch production of highly uniform TMD films on the functional glass substrate with the advantages of low cost, easily transferrable, and compatible with direct applications.


Assuntos
Dissulfetos/química , Vidro/química , Molibdênio/química , Sódio/química , Catálise , Engenharia
20.
Adv Mater ; 30(15): e1705916, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29512246

RESUMO

2D metallic TaS2 is acting as an ideal platform for exploring fundamental physical issues (superconductivity, charge-density wave, etc.) and for engineering novel applications in energy-related fields. The batch synthesis of high-quality TaS2 nanosheets with a specific phase is crucial for such issues. Herein, the successful synthesis of novel vertically oriented 1T-TaS2 nanosheets on nanoporous gold substrates is reported, via a facile chemical vapor deposition route. By virtue of the abundant edge sites and excellent electrical transport property, such vertical 1T-TaS2 is employed as high-efficiency electrocatalysts in the hydrogen evolution reaction, featured with rather low Tafel slopes ≈67-82 mV dec-1 and an ultrahigh exchange current density ≈67.61 µA cm-2 . The influence of phase states of 1T- and 2H-TaS2 on the catalytic activity is also discussed with the combination of density functional theory calculations. This work hereby provides fundamental insights into the controllable syntheses and electrocatalytic applications of vertical 1T-TaS2 nanosheets achieved through the substrate engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA