Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadl0372, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608014

RESUMO

Aging skin, vulnerable to age-related defects, is poor in wound repair. Metabolic regulation in accumulated senescent cells (SnCs) with aging is essential for tissue homeostasis, and adequate ATP is important in cell activation for aged tissue repair. Strategies for ATP metabolism intervention hold prospects for therapeutic advances. Here, we found energy metabolic changes in aging skin from patients and mice. Our data show that metformin engineered EV (Met-EV) can enhance aged mouse skin repair, as well as ameliorate cellular senescence and restore cell dysfunctions. Notably, ATP metabolism was remodeled as reduced glycolysis and enhanced OXPHOS after Met-EV treatment. We show Met-EV rescue senescence-induced mitochondria dysfunctions and mitophagy suppressions, indicating the role of Met-EV in remodeling mitochondrial functions via mitophagy for adequate ATP production in aged tissue repair. Our results reveal the mechanism for SnCs rejuvenation by EV and suggest the disturbed energy metabolism, essential in age-related defects, to be a potential therapeutic target for facilitating aged tissue repair.


Assuntos
Vesículas Extracelulares , Metformina , Humanos , Animais , Camundongos , Idoso , Metabolismo Energético , Envelhecimento , Senescência Celular , Trifosfato de Adenosina
2.
Nanoscale ; 16(12): 6068-6077, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38433725

RESUMO

The exciton-polaritons in a lead halide perovskite not only have great significance for macroscopic quantum effects but also possess vital potential for applications in ultralow-threshold polariton lasers, integrated photonics, slow-light devices, and quantum light sources. In this study, we have successfully demonstrated strong coupling with huge Rabi splitting of 553 meV between perovskite excitons and anapole modes in the perovskite metasurface at room temperature. This outcome is achieved by introducing anapole modes to suppress radiative losses, thereby confining light to the perovskite metasurface and subsequently hybridizing it with excitons in the same material. Our results indicate the formation of self-hybridized exciton-polaritons within the perovskite metasurface, which may pave the way towards achieving high coupling strengths that could potentially bring exciting phenomena to fruition, such as Bose-Einstein condensation as well as enabling applications such as efficient light-emitting diodes and lasers.

3.
Carbohydr Polym ; 332: 121933, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431401

RESUMO

Minimally invasive, efficient, and satisfactory treatment for irregular and lacunar bone defects is still a challenge. Alginate hydrogels serve as promising stem cell (SC) delivery systems for bone regeneration but are limited by low cellular viability, poor osteogenic differentiation, and insufficient mechanical support. Herein, we developed a BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres (BCHMs) system via a microfluidic method that possesses 1) a uniform size and good injectability to meet clinical bone defects with complex shapes, 2) high cellular viability maintenance and further osteogenic induction capacity, and 3) improved mechanical properties. As the main matrix, the sodium alginate hydrogel maintains the high viability of encapsulated BMSCs and efficient substance exchange. Enhanced mechanical properties and osteogenic differentiation of the BCHMs in vitro were observed with xonotlite (Ca6Si6O17(OH)2, CSH) nanowires incorporated. Furthermore, BCHMs with 12.5 % CSH were injected into rat femoral bone defects, and satisfactory in situ regeneration outcomes were observed. Overall, it is believed that BCHMs expand the application of polysaccharide science and provide a promising injectable bone substitute for minimally invasive bone repair.


Assuntos
Hidrogéis , Osteogênese , Ratos , Animais , Hidrogéis/farmacologia , Microesferas , Regeneração Óssea , Alginatos
4.
ACS Omega ; 9(9): 10897-10903, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463245

RESUMO

MicroRNAs (miRNAs) have significant regulatory functions in the modulation of gene expression, making them essential biomarkers for the diagnosis and prognosis of diseases. Nevertheless, the identification of miRNA poses significant difficulty in terms of its low abundance, necessitating sensitive and reliable approaches. Herein, we develop a simple approach, termed Catalytic assembly of DNAzyme integrates with Primer Exchange Reaction (CDiPER), for reliable and sensitive miRNA detection through the target recognition-triggered DNAzyme assembly and primer exchange reaction (PER) strategy. In this method, target miRNA can precisely bind with a specifically designed hairpin probe (H probe) to induce the conformation changes of the H probe, releasing DNAzyme sections to activate the PER process for signal amplification and fluorescence signal production. The established method displays a high dynamic range of over 6 orders of magnitude and a low detection limit of 312 aM. The created method has a number of unique advantages, such as (i) a better sensitivity than existing systems using PER for signal amplification as a result of its integration with the target recognition-triggered DNAzyme assembly and (ii) streamlined operating procedures. Further, the technology was used to detect the expression of miRNA in collected clinical samples from diabetes mellitus patients, revealing that miRNA was decreased in patients and demonstrating the significant clinical promise of the method.

5.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 4-8, 2024 Feb 18.
Artigo em Chinês | MEDLINE | ID: mdl-38318889

RESUMO

Oral diseases concern almost every individual and are a serious health risk to the population. The restorative treatment of tooth and jaw defects is an important means to achieve oral function and support the appearance of the contour. Based on the principle of "learning from the nature", Deng Xuliang's group of Peking University School and Hospital of Stomatology has proposed a new concept of "microstructural biomimetic design and tissue adaptation of tooth/jaw materials" to address the worldwide problems of difficulty in treating dentine hypersensitivity, poor prognosis of restoration of tooth defects, and vertical bone augmentation of alveolar bone after tooth loss. The group has broken through the bottleneck of multi-stage biomimetic technology from the design of microscopic features to the enhancement of macroscopic effects, and invented key technologies such as crystalline/amorphous multi-level assembly, ion-transportation blocking, and multi-physical properties of the micro-environment reconstruction, etc. The group also pioneered the cationic-hydrogel desensitizer, digital stump and core integrated restorations, and developed new crown and bridge restorative materials, gradient functionalisation guided tissue regeneration membrane, and electrically responsive alveolar bone augmentation restorative membranes, etc. These products have established new clinical strategies for tooth/jaw defect repair and achieved innovative results. In conclusion, the research results of our group have strongly supported the theoretical improvement of stomatology, developed the technical system of oral hard tissue restoration, innovated the clinical treatment strategy, and led the progress of the stomatology industry.


Assuntos
Biônica , Restauração Dentária Permanente , Doenças da Boca , Humanos
6.
Small ; 20(10): e2306400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880901

RESUMO

Chirality-directed stem-cell-fate determination involves coordinated transcriptional and metabolomics programming that is only partially understood. Here, using high-throughput transcriptional-metabolic profiling and pipeline network analysis, the molecular architecture of chirality-guided mesenchymal stem cell lineage diversification is revealed. A total of 4769 genes and 250 metabolites are identified that are significantly biased by the biomimetic chiral extracellular microenvironment (ECM). Chirality-dependent energetic metabolism analysis has revealed that glycolysis is preferred during left-handed ECM-facilitated osteogenic differentiation, whereas oxidative phosphorylation is favored during right-handed ECM-promoted adipogenic differentiation. Stereo-specificity in the global metabolite landscape is also demonstrated, in which amino acids are enriched in left-handed ECM, while ether lipids and nucleotides are enriched in right-handed ECM. Furthermore, chirality-ordered transcriptomic-metabolic regulatory networks are established, which address the role of positive feedback loops between key genes and central metabolites in driving lineage diversification. The highly integrated genotype-phenotype picture of stereochemical selectivity would provide the fundamental principle of regenerative material design.


Assuntos
Multiômica , Osteogênese , Linhagem da Célula/genética , Diferenciação Celular/genética , Metabolômica
7.
Front Cardiovasc Med ; 10: 1273547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130687

RESUMO

Atrial fibrillation (AF) stands as the most prevalent persistent arrhythmia and a common complication after surgical procedures. Although the majority of non-cardiac surgery patients experience postoperative AF (POAF) and the condition is typically self-limited and asymptomatic, its detrimental impact on patient outcomes, prolonged hospitalization, and heightened risk of stroke and overall mortality has become increasingly evident. Of significant concern, POAF emerges as a noteworthy risk factor for stroke, myocardial infarction, and mortality in comparison to patients with non-surgical atrial fibrillation. Multiple studies have corroborated the association between POAF and an elevated risk of stroke and mortality. The development of postoperative atrial fibrillation is multifactorial, with the inflammatory response being a primary contributor; additionally, factors such as hypovolemia, intraoperative hypotension, anemia, trauma, and pain can trigger POAF. Risk factors for POAF in non-cardiac surgery primarily relate to age, hypertension, obesity, prior cardiac disease, obstructive sleep apnea, and male sex. Prophylactic treatment with ß-blockers, amiodarone, or magnesium has demonstrated efficacy, but further trials are warranted, especially in high-risk populations. This review provides an account of the incidence rate, pathophysiology, and prognosis of atrial fibrillation after non-cardiac surgery, elucidates the underlying mechanisms of its occurrence, and explores various preventive strategies investigated in this domain.

8.
Front Bioeng Biotechnol ; 11: 1217919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533694

RESUMO

Introduction: Chirality is a crucial mechanical cue within the extracellular matrix during tissue repair and regeneration. Despite its key roles in cell behavior and regeneration efficacy, our understanding of chirality-biased protein profile in vivo remains unclear. Methods: In this study, we characterized the proteomic profile of proteins extracted from bone defect areas implanted with left-handed and right-handed scaffold matrices during the early healing stage. We identified differentially-expressed proteins between the two groups and detected heterogenic characteristic signatures on day 3 and day 7 time points. Results: Proteomic analysis showed that left-handed chirality could upregulate cell adhesion-related and GTPase-related proteins on day 3 and day 7. Besides, interaction analysis and in vitro verification results indicated that the left-handed chiral scaffold material activated Rho GTPase and Akt1, ultimately leading to M2 polarization of macrophages. Discussion: In summary, our study thus improved understanding of the regenerative processes facilitated by chiral materials by characterizing the protein atlas in the context of bone defect repair and exploring the underlying molecular mechanisms of chirality-mediated polarization differences in macrophages.

9.
Angew Chem Int Ed Engl ; 62(34): e202307244, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37358377

RESUMO

This work reports the synthesis, characterization, and reactivity of the first example of a well-defined zinc α-diazoalkyl complex. Treatment of zinc(I)-zinc(I) bonded compound L2 Zn2 [L=CH3 C(2,6-i Pr2 C6 H3 N)CHC(CH3 )(NCH2 CH2 PPh2 )] or zinc(II) hydride LZnH with trimethylsilyldiazomethane affords zinc diazoalkyl complex LZnC(N2 )SiMe3 . This complex liberates N2 in the presence of a nickel catalyst to form an α-zincated phosphorus ylide by reacting with the pendant phosphine. It selectively undergoes formal [3+2] cycloaddition with CO2 or CO to form the corresponding product with a five-membered heterocyclic core. Notably, the use of CO in such a [3+2] cycloaddition reaction is unprecedented, reflecting a novel CO reaction mode.

10.
J Mater Chem B ; 11(20): 4396-4407, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37158364

RESUMO

The osteogenic function of mesenchymal stem cells (MSCs) is mainly attributed to the paracrine effect of extracellular vesicles. MSC-derived exosomes are interesting candidates as biopharmaceuticals for drug delivery and for the engineering of biologically functionalized materials, and have emerged as cell-free regenerative medicine in recent years. In this study, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were loaded with photothermal material layered black phosphorus (BP) modified poly(N-isopropylacrylamide) (PNIPAAm) thermosensitive hydrogels to explore their effects on bone defect repair. In vitro, it was confirmed that the local high heat of nano-BP irradiated using a near-infrared (NIR) laser could trigger the reversible cascade reaction of hydrogels, and that the mechanical contraction of hydrogels led to the controllable release of a large number of exosomes along with the release of water molecules. Furthermore, in vitro investigations demonstrated that BP hydrogels loaded with BMSC-derived exosomes had favourable biocompatibility and could promote the proliferation and osteogenic differentiation of MSCs. Experiments conducted in vivo confirmed that this system significantly promoted bone regeneration. Therefore, the results of our study indicated that the nanoplatform based on BP thermosensitive hydrogels could provide a new clinical treatment strategy for controlled release and on-demand drug delivery, while the cell-free system composed of BMSC-derived exosomes had great application potential in bone tissue repair with the synergism of BP.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Osteogênese , Hidrogéis/farmacologia , Osso e Ossos
11.
Front Bioeng Biotechnol ; 11: 1161192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923463

RESUMO

Introduction: Achieving a successful reconstruction of alveolar bone morphology still remains a challenge because of the irregularity and complex microenvironment of tooth sockets. Biological materials including hydroxyapatite and collagen, are used for alveolar ridge preservation. However, the healing effect is often unsatisfactory. Methods: Inspired by superwetting biomimetic materials, we constructed a 3D actively-spreading bone repair material. It consisted of photocurable polyether F127 diacrylate hydrogel loaded with mixed spheroids of mesenchymal stem cells (MSCs) and vascular endothelial cells (ECs). Results: Biologically, cells in the spheroids were able to spread and migrate outwards, and possessed both osteogenic and angiogenic potential. Meanwhile, ECs also enhanced osteogenic differentiation of MSCs. Mechanically, the excellent physical properties of F127DA hydrogel ensured that it was able to be injected directly into the tooth socket and stabilized after light curing. In vivo experiments showed that MSC-EC-F127DA system promoted bone repair and preserved the shape of alveolar ridge within a short time duration. Discussion: In conclusion, the novel photocurable injectable MSC-EC-F127DA hydrogel system was able to achieve three-dimensional tissue infiltration, and exhibited much therapeutic potential for complex oral bone defects in the future.

12.
Adv Mater ; 35(19): e2210637, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36756993

RESUMO

Current functional assessment of biomaterial-induced stem cell lineage fate in vitro mainly relies on biomarker-dependent methods with limited accuracy and efficiency. Here a "Mesenchymal stem cell Differentiation Prediction (MeD-P)" framework for biomaterial-induced cell lineage fate prediction is reported. MeD-P contains a cell-type-specific gene expression profile as a reference by integrating public RNA-seq data related to tri-lineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of human mesenchymal stem cells (hMSCs) and a predictive model for classifying hMSCs differentiation lineages using the k-nearest neighbors (kNN) strategy. It is shown that MeD-P exhibits an overall accuracy of 90.63% on testing datasets, which is significantly higher than the model constructed based on canonical marker genes (80.21%). Moreover, evaluations of multiple biomaterials show that MeD-P provides accurate prediction of lineage fate on different types of biomaterials as early as the first week of hMSCs culture. In summary, it is demonstrated that MeD-P is an efficient and accurate strategy for stem cell lineage fate prediction and preliminary biomaterial functional evaluation.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Humanos , Linhagem da Célula , Materiais Biocompatíveis/metabolismo , Inteligência Artificial , Diferenciação Celular/genética , Osteogênese , Aprendizado de Máquina , Condrogênese
13.
World Neurosurg ; 170: e37-e44, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36273731

RESUMO

OBJECTIVE: The benefit of postoperative adjuvant therapy for survival of oligodendrocyte glioma remains unclear. In this study, we compared the effect of chemoradiation therapy (CRT) and chemotherapy (CT) alone in patients who underwent resection. We aim to identify which adjuvant therapy provides more survival benefits. METHODS: We identified patients who underwent oligodendroglioma resection in the Surveillance, Epidemiology and End Results (SEER) database. A multivariate Cox regression analysis was used to evaluate the factors affecting survival rates. We used a propensity matching analysis to minimize selection bias in each group. We performed subgroup analyses based on patients' clinical characteristics. RESULTS: This study identified 1826 patients who received adjuvant CT (n = 503) or adjuvant CRT (n = 1323). On multivariate analysis, elderly, white and other race, and temporal lobe and parietal lobe tumor site were independent risk factors for improved overall survival (OS). After 1:1 propensity match, we included 501 patients who received CT and 501 with CRT. Patients in the CT group showed improved overall survival rate compared with those who received CRT (median OS: 146 months vs. 111 months). Subgroup analysis showed that improved overall survival in CT group was more significant in patients who were younger or older, male or female, white race, frontal lobe and parietal lobe tumor site, smaller tumor size (≤4 cm), and with gross total resection (GTR) (P < 0.05). CONCLUSIONS: In patients with resected oligodendroglioma, adjuvant CT is associated with better survival compared to adjuvant CRT. The benefit was more significant in patients who were younger and older, male and female, white race, frontal lobe and parietal lobe tumor site, smaller tumor size (≤4 cm), and with GTR.


Assuntos
Oligodendroglioma , Masculino , Feminino , Humanos , Oligodendroglioma/cirurgia , Quimiorradioterapia Adjuvante , Terapia Combinada , Quimioterapia Adjuvante
14.
Front Bioeng Biotechnol ; 10: 1026911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225601

RESUMO

Temporomandibular disorders (TMD) can be treated by promoting cartilage regeneration with biomaterials. However, there are deficiencies in the infiltration function of bone filler biological materials. In this study, stems cells were loaded onto gelatin methacryloyl (GelMA) hydrogel microspheres endowed with superwettable properties and TGF-ß sustained-release function, which can quickly infiltrate the irregular surface of the temporomandibular joint (TMJ) bone defect area and accelerate cartilage healing. First, to improve cell adhesion and spreading function, the BMSCs-coated GelMA microspheres were endowed with superwetting property. At the same time, the swelling adsorption characteristics of gelatin microspheres could be used to load recombinant TGF-ß within the microspheres, which could in turn promote the chondrogenic differentiation of multi-potent bone marrow mesenchymal stem cells. The SEM imaging demonstrated that BMSCs-coated GelMA microsphere has superwettable and superhydrophilic property, which enabled rapid adaptation to the bone defect surface morphology, which is conducive to tissue repair. Furthermore, the cartilage defect model showed that rBMSCs-coated GelMA microspheres promote temporomandibular joint arthritis repair. In conclusion, our study established that BMSC-coated GelMA microspheres endowed with superwetting properties, can colonize the bone defect repair site better with sustained release of growth factors, thus providing an innovative strategy for promoting cartilage regeneration.

15.
Front Bioeng Biotechnol ; 10: 1022368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185451

RESUMO

Osteoarthritis (OA) is a worldwide and disabling disease, which cause severe pain and heavy socioeconomic burden. However, pharmacologic or surgical therapies cannot mitigate OA progression. Mesenchymal stem cells (MSCs) therapy has emerged as potential approach for OA treatment, while the immunogenicity and ethical audit of cell therapy are unavoidable. Compared with stem cell strategy, EVs induce less immunological rejection, and they are more stable for storage and in vivo application. MSC-EVs-based therapy possesses great potential in regulating inflammation and promoting cartilage matrix reconstruction in OA treatment. To enhance the therapeutic effect, delivery efficiency, tissue specificity and safety, EVs can be engineered via different modification strategies. Here, the application of MSC-EVs in OA treatment and the potential underlying mechanism were summarized. Moreover, EV modification strategies including indirect MSC modification and direct EV modification were reviewed.

16.
J Am Chem Soc ; 144(36): 16647-16655, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36041123

RESUMO

The nature of transition-metal-olefin bonding has been explained by the Dewar-Chatt-Duncanson model within a continuum of two extremes, namely, a π-complex and a metallacyclopropane. The textbook rule suggests that a low-spin late-transition-metal-ethylene complex more likely forms a π-complex rather than a metallacyclopropane. Herein, we report a low-spin late-transition-metal-bis-ethylene complex forming an unprecedented planar metalla-bis-cyclopropane structure with magnesium-based metalloligands. Treatment of LMgEt (L = [(DippNCMe)2CH]-, Dipp = 2,6-iPr2C6H3) with Ni(cod)2 (cod = 1,5-cyclooctadiene) formed the heterotrimetallic complex (LMg)2Ni(C2H4)2, which features a linear Mg-Ni-Mg linkage and a planar coordination geometry at the nickel center. Both structural features and computational studies strongly supported the Ni(C2H4)2 moiety as a nickelaspiropentane. The exposure of (LMg)2Ni(C2H4)2 to 1 bar H2 at room temperature produced a four-hydride-bridged complex (LMg)2Ni(µ-H)4. The profile of H2 activation was elucidated by density functional theory calculations, which indicated a novel Mg/Ni cooperative activation mechanism with no oxidation occurring at the metal center, differing from the prevailing mono-metal-based redox mechanism. Moreover, the heterotrimetallic complex (LMg)2Ni(C2H4)2 catalyzed the hydrogenation of a wide range of unsaturated substrates under mild conditions.

17.
Inorg Chem ; 61(20): 8083-8089, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35533341

RESUMO

This work provides a facile access to a series of triangular [Zn2M] (M = group 10 and 11 metals) clusters. Treatment of Zn-Zn-bonded compounds [LZn-ZnL] (L = CH3C(2,6-iPr2C6H3N)CHC(CH3)(NCH2CH2PR2); R = Ph, iPr) with zero-valent transition-metal reagents selectively afforded the corresponding triangular clusters [Zn2M], where M = Ni(0), Pd(0), and Pt(0). Notably, the isoelectronic triangular clusters [Zn2M]+, where M = Ag(I) and Cu(I), could also be obtained by reactions of [LZn-ZnL] with AgOTf and CuOTf, respectively. The [Zn2Ag]+ complex containing elusive Zn-Ag bonds was investigated by density functional theory analysis, showing a 3c-2e bonding feature in the metallic ring. The electrochemical behaviors of [Zn2M] complexes were examined and revealed the donation of electron density from the Zn-Zn σ-bond to the metal centers. Reaction of the [Zn2Ni] complex with isocyanide gave heterometallic species by coordination of isocyanide to the nickel center, keeping the trimetallic ring core structure intact. In contrast, the Zn-Zn bond was rapidly cleaved upon treatment of the [Zn2Ni] complex with dihydrogen or phenyl acetylene, generating the hydride- or acetylide-bridged heterotrimetallic complex.

18.
Angew Chem Int Ed Engl ; 61(21): e202117750, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35263010

RESUMO

This work reports a site-selective C-H borylation of pyridines at the ortho-position with pinacolborane enabled by an yttrocene catalyst. The reaction provides a new family of 2-pyridyl boronates with a broad substrate scope and high atom efficiency. The resultant boronates were able to undergo a variety of transformations, e.g., oxidation, Suzuki-Miyaura coupling, Chan-Lam amination and etherification. Catalytic intermediates, including ortho-C-H metalated and borylated complexes, were isolated from stoichiometric experiments and confirmed by single-crystal X-ray diffraction.

19.
J Nanobiotechnology ; 20(1): 162, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35351145

RESUMO

BACKGROUND: The repair of tissue defects has attracted considerable attention and remained a substantial challenge. Calcium silicate (CaSiO3, CS) bioceramics have attracted the interest of researchers due to their excellent biodegradability. Recent studies have demonstrated that nanoscale-modified bioactive materials with favorable biodegradability could promote bone tissue regeneration, providing an alternative approach for the repair of bone defects. However, the direct construction of biodegradable nanostructures in situ on CS bioceramics was still difficult. RESULTS: In this study, flower-like nanostructures were flexibly prepared in situ on biodegradable CS bioceramics via hydrothermal treatment. The flower-like nanostructure surfaces exhibited better hydrophilicity and more significantly stimulated cell adhesion, alkaline phosphatase (ALP) activity, and osteogenic differentiation. Furthermore, the CS bioceramics with flower-like nanostructures effectively promoted bone regeneration and were gradually replaced with newly formed bone due to the favorable biodegradability of these CS bioceramics. Importantly, we revealed an osteogenesis-related mechanism by which the FAK/p38 signaling pathway could be involved in the regulation of bone mesenchymal stem cell (BMSC) osteogenesis by the flower-like nanostructure surfaces. CONCLUSIONS: Flower-like nanostructure surfaces on CS bioceramics exerted a strong effect on promoting bone repair and regeneration, suggesting their excellent potential as bone implant candidates for improving bone regeneration.


Assuntos
Nanoestruturas , Osteogênese , Regeneração Óssea , Compostos de Cálcio , Transdução de Sinais , Silicatos
20.
Int J Nanomedicine ; 17: 783-797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221685

RESUMO

BACKGROUND: The synergistic effect of chemical element doping and surface modification is considered a novel way to regulate cell biological responses and improve the osteoinductive ability of biomaterials. METHODS: Hydroxyapatite (HAp) bioceramics with micro-nano-hybrid (a mixture of microrods and nanorods) surfaces and different strontium (Sr) doping contents of 2.5, 5, 10, and 20% (Srx-mnHAp, x: 2.5, 5, 10 and 20%) were prepared via a hydrothermal transformation method. The effect of Srx-mnHAp on osteogenesis and angiogenesis of bone marrow stromal cells (BMSCs) was evaluated in vitro, and the bioceramics scaffolds were further implanted into rat calvarial defects for the observation of bone regeneration in vivo. RESULTS: HAp bioceramics with micro-nano-hybrid surfaces (mnHAp) could facilitate cell spreading, proliferation ability, ALP activity, and gene expression of osteogenic and angiogenic factors, including COL1, BSP, BMP-2, OPN, VEGF, and ANG-1. More importantly, Srx-mnHAp (x: 2.5, 5, 10 and 20%) further promoted cellular osteogenic activity, and Sr10-mnHAp possessed the best stimulatory effect. The results of calvarial defects revealed that Sr10-mnHAp could promote more bone and blood vessel regeneration, with mnHAp and HAp bioceramics (dense and flat surfaces) as compared. CONCLUSION: The present study suggests that HAp bioceramics with micro-nano-hybrid surface and Sr doping had synergistic promotion effects on bone regeneration, which can be a promising material for bone defect repair.


Assuntos
Durapatita , Osteogênese , Animais , Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Durapatita/química , Durapatita/farmacologia , Ratos , Estrôncio/química , Estrôncio/farmacologia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA