Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 11: 569368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013408

RESUMO

Protoporphyrin IX (PPIX) is a heterocyclic organic compound that is the last intermediate in the heme biosynthetic pathway. PPIX, due to its photodynamic effects, is utilized in the treatment of skin diseases. Furthermore, PPIX has been utilized as a melanogenesis-stimulating agent in various studies. However, the exact function and mechanism underlying PPIX action in melanocytes remain to be elucidated. In the present study, we sought to further investigate how PPIX affects melanocyte melanogenesis, and whether PPIX is involved in melanin transport. Our findings demonstrated that PPIX increased melanocyte dendricity and melanosome transport, in addition to increasing melanogenesis. PPIX functions primarily by activating the guanylate cyclase (GC) and cyclic guanosine 3', 5'-monophosphate/protein kinase G (cGMP/PKG) signaling pathways. Once activated, these pathways increase tyrosinase activity and the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2), myosin Va, melanophinin, Ras-related protein Rab-27A (Rab27a), and cell division cycle 42 (Cdc42), promoting melanogenesis, melanocyte dendricity, and melanosome transport. Furthermore, the melanogenic effects of PPIX were confirmed in vivo in a zebrafish model system. Our results indicate that PPIX is not cytotoxic and may, thus, be utilized as a pigmentation enhancer.

2.
Exp Ther Med ; 19(2): 923-930, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010253

RESUMO

Osteoporosis is a severe bone disease characterized by a decrease in the density and structure of bones, with high risks of fractures. Pilose antler peptide (PAP), extracted and purified from deer antlers, can promote regeneration and fracture healing, and strengthen sinews and bone. To determine whether PAP can promote osteoblast development and to elucidate the molecular mechanisms underlying its functions, the present study investigated the effects of PAP on osteoblast proliferation, differentiation and mineralization, and the role of the insulin signaling pathway using MTT assay, alkaline phosphatase activity assay, western blot analysis and reverse transcription-quantitative PCR. The present results suggested that PAP promoted osteoblast proliferation, differentiation and mineralization in vitro via the insulin signaling pathway. The effect of PAP on insulin signaling in osteoblasts may be mediated via the ERK pathway and partially by the PI3K/Akt pathway. The present results indicated that PAP could potentially be developed as an alternative treatment strategy for bone diseases related to diabetes characterized by insulin signaling impairment.

3.
Front Pharmacol ; 11: 602889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390991

RESUMO

FGIN-1-27 is a synthetic mitochondrial diazepam binding inhibitor receptor (MDR) agonist that has demonstrated pro-apoptotic, anti-anxiety, and steroidogenic activity in various studies. Here we report, for the first time, the anti-melanogenic efficacy of FGIN-1-27 in vitro and in vivo. FGIN-1-27 significantly inhibited basal and α-melanocyte-stimulating hormone (α-MSH)-, 1-Oleoyl-2-acetyl-sn-glycerol (OAG)- and Endothelin-1 (ET-1)-induced melanogenesis without cellular toxicity. Mushroom tyrosinase activity assay showed that FGIN-1-27 did not directly inhibit tyrosinase activity, which suggested that FGIN-1-27 was not a direct inhibitor of tyrosinase. Although it was not capable of modulating the catalytic activity of mushroom tyrosinase in vitro, FGIN-1-27 downregulated the expression levels of key proteins that function in melanogenesis. FGIN-1-27 played these functions mainly by suppressing the PKA/CREB, PKC-ß, and MAPK pathways. Once inactivated, it decreased the expression of MITF, tyrosinase, TRP-1, TRP-2, and inhibited the tyrosinase activity, finally inhibiting melanogenesis. During in vivo experiments, FGIN-1-27 inhibited the body pigmentation of zebrafish and reduced UVB-induced hyperpigmentation in guinea pig skin, but not a reduction of numbers of melanocytes. Our findings indicated that FGIN-1-27 exhibited no cytotoxicity and inhibited melanogenesis in both in vitro and in vivo models. It may prove quite useful as a safer skin-whitening agent.

4.
Exp Dermatol ; 29(2): 149-157, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31785162

RESUMO

Isoliquiritigenin (ISL), a flavonoid component from the hydrolysis products of licorice root. It has been reported that ISL inhibited melanogenesis by suppressing the tyrosinase activity in human melanocytes. Recently, ISL was found to induce melanin degradation in human epidermal keratinocytes. However, the role of ISL in pigmentation is not fully understood. In the current study, we aimed to investigate the effects of ISL on pigmentation, and further explored the underlying mechanism. Our results suggested that ISL suppressed basal and α-MSH-, ACTH- and UV-induced melanin synthesis, in addition to inhibiting melanocyte dendricity and melanosome transport. ISL played these roles mainly by activating the extracellular signal-regulated protein kinase pathway. Once activated, it induced microphthalmia-associated transcription factor degradation and decreased the expression of tyrosinase, TRP-1, DCT, Rab27a and Cdc42, finally inhibited melanogenesis, melanocyte dendricity and melanosome transport. Our findings suggested that ISL exhibited no cytotoxicity in our research, it may prove quite useful as a safer natural skin-whitening agent.


Assuntos
Chalconas/farmacologia , Inibidores Enzimáticos/farmacologia , Melaninas/biossíntese , Fator de Transcrição Associado à Microftalmia/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Hormônio Adrenocorticotrópico/farmacologia , Linhagem Celular Tumoral , Humanos , Oxirredutases Intramoleculares/metabolismo , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pele/metabolismo , Técnicas de Cultura de Tecidos , Tripsina/metabolismo , alfa-MSH/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA