Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 238: 109727, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972749

RESUMO

Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.


Assuntos
Dieta Hiperlipídica , Artéria Oftálmica , Doenças Vasculares , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/metabolismo , Obesidade , Artéria Oftálmica/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Doenças Vasculares/metabolismo , Vasodilatação
2.
Diseases ; 11(4)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37873768

RESUMO

Atherogenic lipoproteins may impair vascular reactivity, leading to tissue damage in various organs, including the eye. This study aimed to investigate whether ophthalmic artery reactivity is affected in mice lacking the apolipoprotein E gene (ApoE-/-), a model for hypercholesterolemia and atherosclerosis. Twelve-month-old male ApoE-/- mice and age-matched wild-type controls were used to assess vascular reactivity using videomicroscopy. Moreover, the vascular mechanics, lipid content, levels of reactive oxygen species (ROS), and expression of pro-oxidant redox enzymes and the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) were determined in vascular tissue. Unlike the aorta, the ophthalmic artery of ApoE-/- mice developed no signs of endothelial dysfunction and no signs of excessive lipid deposition. Remarkably, the levels of ROS, nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NOX2, NOX4, and LOX-1 were increased in the aorta but not in the ophthalmic artery of ApoE-/- mice. Our findings suggest that ApoE-/- mice develop endothelial dysfunction in the aorta by increased oxidative stress via the involvement of LOX-1, NOX1, and NOX2, whereas NOX4 may participate in media remodeling. In contrast, the ophthalmic artery appears to be resistant to chronic apolipoprotein E deficiency. A lack of LOX-1 expression/overexpression in response to increased oxidized low-density lipoprotein levels may be a possible mechanism of action.

3.
Sci Total Environ ; 903: 166106, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567316

RESUMO

Large epidemiological studies have shown that traffic noise promotes the development of cardiometabolic diseases. It remains to be established how long these adverse effects of noise may persist in response to a noise-off period. We investigated the effects of acute aircraft noise exposure (mean sound level of 72 dB(A) applied for 4d) on oxidative stress and inflammation mediating vascular dysfunction and increased blood pressure in male C57BL/6 J mice. 1, 2 or 4d of noise cessation after a 4d continuous noise exposure period completely normalized noise-induced endothelial dysfunction of the aorta (measured by acetylcholine-dependent relaxation) already after a 1d noise pause. Vascular oxidative stress and the increased blood pressure were partially corrected, while markers of inflammation (VCAM-1, IL-6 and leukocyte oxidative burst) showed a normalization within 4d of noise cessation. In contrast, endothelial dysfunction, oxidative stress, and inflammation of the cerebral microvessels of noise-exposed mice did not improve at all. These data demonstrate that the recovery from noise-induced damage is more complex than expected demonstrating a complete restoration of large conductance vessel function but persistent endothelial dysfunction of the microcirculation. These findings also imply that longer noise pauses are required to completely reverse noise-induced vascular dysfunction including the resistance vessels.

4.
Eur J Prev Cardiol ; 30(15): 1554-1568, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37185661

RESUMO

AIMS: Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS: Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION: Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.


Traffic noise, e.g. from aircraft, significantly contributes to an increased risk of cardiovascular or metabolic diseases in the general population by brain-dependent stress reactions leading to higher levels of circulating stress hormones and vasoconstrictors, all of which cause hypertension, oxidative stress, and inflammation. With the present experimental studies, we provide for the first time molecular mechanisms responsible for successful noise mitigation: Physical exercise, intermittent fasting, and pharmacological activation of the adenosine monophosphate-activated protein kinase (AMPK), a metabolic master regulator protein, prevent cardiovascular damage caused by noise exposure, such as hypertension, endothelial dysfunction, and reactive oxygen species formation (e.g. free radicals) and inflammation.These beneficial mitigation manoeuvers are secondary to an activation of the endothelial AMPK, thereby mimicking the antidiabetic drug metformin.


Assuntos
Endotélio Vascular , Ruído dos Transportes , Humanos , Camundongos , Animais , Endotélio Vascular/metabolismo , Estresse Oxidativo , Ruído dos Transportes/efeitos adversos , Jejum , Aeronaves , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia
5.
Redox Biol ; 59: 102580, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566737

RESUMO

Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM the lungs. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure.


Assuntos
COVID-19 , Sistema Cardiovascular , Camundongos , Animais , Material Particulado/efeitos adversos , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Estresse Oxidativo , Aeronaves
6.
Exp Eye Res ; 213: 108853, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800481

RESUMO

PURPOSE: The roles of vascular dysfunction and chronic stress have been extensively discussed in the pathophysiology of glaucoma. Our aim was to test whether chronic stress causes retinal vascular dysfunction and therewith induces retinal ganglion cells (RGCs) loss. METHODS: Twelve mice underwent chronic social defeat (CSD) stress, while 12 mice received control treatment only. Intraocular pressure (IOP) was measured with a rebound tonometer. Blood plasma corticosterone concentration and adrenal gland weight were used to assess stress levels. Brn-3a staining in retinas and PPD staining in optic nerve cross sections were conducted to assess the survival of RGCs and axons respectively. The ET-1 and α-SMA levels were determined in retina. Retinal vascular autoregulation, functional response to various vasoactive agents and vascular mechanics were measured using video microscopy. RESULTS: No significant difference in IOP levels was observed during and after CSD between CSD mice and controls. CSD stress caused hypercortisolemia 2 days post-CSD. However, increased corticosterone levels went back to normal 8 months after CSD. CSD-exposed mice developed adrenal hyperplasia 3 days post-CSD, which was normalized by 8 months. RGC and axon survival were similar between CSD mice and controls. However, CSD stress caused irreversible, impaired autoregulation and vascular dysfunction of retinal arterioles in CSD mice. In addition, impaired maximal dilator capacity of retinal arterioles was observed 8 months post-CSD rather than 3 days post-CSD. Remarkably, ET-1 levels were increased 3 days post-CSD while α-SMA levels were decreased 8 months post-CSD. CONCLUSIONS: We found that CSD stress does not cause IOP elevation, nor loss of RGCs and their axons. However, it strikingly causes irreversible impaired autoregulation and endothelial function in murine retinal arterioles. In addition, CSD changed vascular mechanics on a long-term basis. Increased ET-1 levels and loss of pericytes in retina vessels may involve in this process.


Assuntos
Artéria Retiniana/fisiopatologia , Doenças Retinianas/fisiopatologia , Células Ganglionares da Retina/patologia , Derrota Social , Estresse Psicológico/fisiopatologia , Actinas/metabolismo , Hiperplasia Suprarrenal Congênita/fisiopatologia , Animais , Sobrevivência Celular , Doença Crônica , Corticosterona/sangue , Modelos Animais de Doenças , Transtorno 46,XY do Desenvolvimento Sexual/fisiopatologia , Endotelina-1/metabolismo , Pressão Intraocular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipertensão Ocular/fisiopatologia , Nervo Óptico/fisiopatologia , Artéria Retiniana/metabolismo , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo , Estresse Psicológico/metabolismo , Tonometria Ocular , Fator de Transcrição Brn-3A/metabolismo , Gravação em Vídeo
7.
MethodsX ; 8: 101540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754808

RESUMO

This article contains supporting information on data collection for the research article entitled "Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice" by Eckrich et al. We found that noise-induced stress triggered microvascular dysfunction via involvement of innate immune-derived reactive oxygen species. In this article, we present the instrumentation of mice with dorsal skinfold chambers for in vivo microscopic imaging of blood flow, interaction of leukocytes with the vascular wall (also by fluorescent labelling of blood cells) and vessel diameter. In addition, we explain the preparation of cerebral arterioles for measurement of vascular reactivity in vitro.•visualization of noise-dependent effects in dorsal skinfold chamber.•in vivo microscopy of noise-dependent activation of white blood cells.•analysis of noise-dependent microvascular dysfunction in dorsal skinfold chamber and cannulated cerebral arterioles.

8.
Cells ; 10(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571952

RESUMO

In the human cornea, regeneration of the epithelium is regulated by the stem cell reservoir of the limbus, which is the marginal region of the cornea representing the anatomical and functional border between the corneal and conjunctival epithelium. In support of this concept, extensive limbal damage, e.g., by chemical or thermal injury, inflammation, or surgery, may induce limbal stem cell deficiency (LSCD) leading to vascularization and opacification of the cornea and eventually vision loss. These acquired forms of limbal stem cell deficiency may occur uni- or bilaterally, which is important for the choice of treatment. Moreover, a variety of inherited diseases, such as congenital aniridia or dyskeratosis congenita, are characterized by LSCD typically occurring bilaterally. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of the corneal epithelium, the pathophysiology of LSCD, and the therapeutic options will be presented.


Assuntos
Córnea/patologia , Córnea/fisiologia , Epitélio Corneano/patologia , Epitélio Corneano/fisiologia , Animais , Doenças da Córnea/patologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Humanos , Transplante de Células-Tronco/métodos , Células-Tronco/patologia , Células-Tronco/fisiologia
9.
Redox Biol ; 46: 102063, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274810

RESUMO

Epidemiological studies showed that traffic noise has a dose-dependent association with increased cardiovascular morbidity and mortality. Whether microvascular dysfunction contributes significantly to the cardiovascular health effects by noise exposure remains to be established. The connection of inflammation and immune cell interaction with microvascular damage and functional impairment is also not well characterized. Male C57BL/6J mice or gp91phox-/y mice with genetic deletion of the phagocytic NADPH oxidase catalytic subunit (gp91phox or NOX-2) were used at the age of 8 weeks, randomly instrumented with dorsal skinfold chambers and exposed or not exposed to aircraft noise for 4 days. Proteomic analysis (using mass spectrometry) revealed a pro-inflammatory phenotype induced by noise exposure that was less pronounced in noise-exposed gp91phox-/y mice. Using in vivo fluorescence microscopy, we found a higher number of adhesive leukocytes in noise-exposed wild type mice. Dorsal microvascular diameter (by trend), red blood cell velocity, and segmental blood flow were also decreased by noise exposure indicating microvascular constriction. All adverse effects on functional parameters were normalized or improved at least by trend in noise-exposed gp91phox-/y mice. Noise exposure also induced endothelial dysfunction in cerebral microvessels, which was associated with higher oxidative stress burden and inflammation, as measured using video microscopy. We here establish a link between a pro-inflammatory phenotype of plasma, activation of circulating leukocytes and microvascular dysfunction in mice exposed to aircraft noise. The phagocytic NADPH oxidase was identified as a central player in the underlying pathophysiological mechanisms.


Assuntos
Leucócitos , Proteômica , Aeronaves , Animais , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo
10.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200187

RESUMO

The parasympathetic nervous system is critically involved in the regulation of tear secretion by activating muscarinic acetylcholine receptors. Hence, various animal models targeting parasympathetic signaling have been developed to induce dry eye disease (DED). However, the muscarinic receptor subtype (M1-M5) mediating tear secretion remains to be determined. This study was conducted to test the hypothesis that the M3 receptor subtype regulates tear secretion and to evaluate the ocular surface phenotype of mice with targeted disruption of the M3 receptor (M3R-/-). The experimental techniques included quantification of tear production, fluorescein staining of the ocular surface, environmental scanning electron microscopy, assessment of proliferating cells in the corneal epithelium and of goblet cells in the conjunctiva, quantification of mRNA for inflammatory cytokines and prooxidant redox enzymes and quantification of reactive oxygen species. Tear volume was reduced in M3R-/- mice compared to age-matched controls at the age of 3 months and 15 months, respectively. This was associated with mild corneal epitheliopathy in the 15-month-old but not in the 3-month-old M3R-/- mice. M3R-/- mice at the age of 15 months also displayed changes in corneal epithelial cell texture, reduced conjunctival goblet cell density, oxidative stress and elevated mRNA expression levels for inflammatory cytokines and prooxidant redox enzymes. The findings suggest that the M3 receptor plays a pivotal role in tear production and its absence leads to ocular surface changes typical for DED at advanced age.


Assuntos
Túnica Conjuntiva/patologia , Síndromes do Olho Seco/patologia , Epitélio Corneano/patologia , Células Caliciformes/patologia , Receptor Muscarínico M3/fisiologia , Animais , Túnica Conjuntiva/metabolismo , Modelos Animais de Doenças , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/metabolismo , Células Caliciformes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Lágrimas/metabolismo
11.
Basic Res Cardiol ; 116(1): 31, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33929610

RESUMO

Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.


Assuntos
Artérias/enzimologia , Encéfalo/enzimologia , Encefalite/prevenção & controle , Microglia/enzimologia , Muramidase/deficiência , Células Mieloides/enzimologia , Ruído dos Transportes/efeitos adversos , Doenças Vasculares Periféricas/prevenção & controle , Aeronaves , Animais , Artérias/fisiopatologia , Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/enzimologia , Encefalite/etiologia , Encefalite/patologia , Deleção de Genes , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Muramidase/genética , Estresse Oxidativo , Doenças Vasculares Periféricas/enzimologia , Doenças Vasculares Periféricas/etiologia , Doenças Vasculares Periféricas/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
12.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525498

RESUMO

Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.


Assuntos
Degeneração Macular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Corioide/metabolismo , Corioide/fisiopatologia , Redes Reguladoras de Genes , Humanos , Degeneração Macular/genética , Degeneração Macular/fisiopatologia , Estresse Oxidativo
13.
Cells ; 9(12)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287335

RESUMO

The retina is a part of the central nervous system, a thin multilayer with neuronal lamination, responsible for detecting, preprocessing, and sending visual information to the brain. Many retinal diseases are characterized by hemodynamic perturbations and neurodegeneration leading to vision loss and reduced quality of life. Since catecholamines and respective bindings sites have been characterized in the retina, we systematically reviewed the literature with regard to retinal expression, distribution and function of alpha1 (α1)-, alpha2 (α2)-, and beta (ß)-adrenoceptors (ARs). Moreover, we discuss the role of the individual adrenoceptors as targets for the treatment of retinal diseases.


Assuntos
Receptores Adrenérgicos/metabolismo , Retina/metabolismo , Animais , Sítios de Ligação/fisiologia , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Doenças Retinianas/metabolismo
14.
Antioxidants (Basel) ; 9(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824523

RESUMO

Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA