Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582457

RESUMO

Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes. Editing BMP15 impaired the IVM of porcine oocytes, as indicated by the significantly increased abnormal spindle assembly and reduced first polar body (PB1) extrusion. The editing also impaired cytoplasmic maturation of porcine oocytes, as reflected by reduced abundant of Golgi apparatus and impaired functions of mitochondria. The impaired IVM of porcine oocytes by editing BMP15 possibly was associated with the attenuated SMAD1/5 and EGFR-ERK1/2 signaling in the cumulus granulosa cells (CGCs) and the inhibited MOS/ERK1/2 signaling in oocytes. The attenuated MOS/ERK1/2 signaling may contribute to the inactivation of maturation promoting factor (MPF) and the increased abnormal spindle assembly, leading to reduced PB1 extrusion. It also may contribute to reduced Golgi apparatus formation, and impaired functions of mitochondria. These findings expand our understanding of the regulatory role of BMP15 in the IVM of porcine oocytes and provide a basis for manipulation of porcine reproductive performance.


Assuntos
Proteína Morfogenética Óssea 15 , Oócitos , Fuso Acromático , Animais , Oócitos/metabolismo , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Suínos , Feminino , Fuso Acromático/metabolismo , Sistema de Sinalização das MAP Quinases , Mitocôndrias/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Complexo de Golgi/metabolismo , Organelas/metabolismo , Organelas/genética , Transdução de Sinais
2.
Reproduction ; 166(4): 247-261, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561570

RESUMO

In brief: The regulatory role of BMP15 on porcine ovarian follicular development still remains unclear. This study reveals that biallelic editing of BMP15 impairs SMAD signaling and inhibits granulosa cell proliferation, resulting in porcine follicular development arrest and ovarian hypoplasia. Abstract: Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor beta (TGF-ß) superfamily, which is critical for facilitating ovarian folliculogenesis in mono-ovulatory mammalian species but is not essential in polyovulatory mice. Our previously established BMP15-edited pigs presented varied female reproductive phenotypes, suggesting the important role of BMP15 in ovarian folliculogenesis in polyovulatory pigs. To understand the regulatory mechanism underlying the effect of BMP15 on porcine ovarian follicular development, we molecularly characterized infertile biallelic-BMP15-edited gilts with ovarian hypoplasia. We found that an absence of BMP15 proteins in biallelic-BMP15-edited gilts can lead to premature activation of primordial follicles, possibly through the upregulation of KITLG-KIT-PI3K-AKT signaling pathways. However, this absence severely impaired SMAD (Sma and Mad proteins from Caenorhabditis elegans and Drosophila, respectively) signaling, causing severely reduced granulosa cell proliferation, leading to the arrest of follicular development during the preantral stage and ovarian hypoplasia, resulting in complete infertility. Our study expands the understanding of the molecular functions of BMP15 in nonrodent polyovulatory mammals.


Assuntos
Proteína Morfogenética Óssea 15 , Fosfatidilinositol 3-Quinases , Feminino , Suínos , Animais , Camundongos , Proteína Morfogenética Óssea 15/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Mamíferos/metabolismo
3.
Theriogenology ; 198: 241-249, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621133

RESUMO

Bone morphogenetic protein 15 (BMP15) is an X-linked gene encoding an oocyte secreted factor, which plays varied functions in the female fertility between mono-ovulatory and poly-ovulatory mammalian species. We previously found that knockout of BMP15 completely blocked porcine follicular development at preantral stages. However, the specific function of BMP15 on porcine oocytes in vitro maturation remains largely unknown. Here, we injected the pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complex into the cytoplasm of germinal vesicle stage porcine oocytes to disrupt BMP15. The ctRNP composed of Cas9 nuclease and crRNA-tracrRNA complex at 1.2/1 content ratio. The tested crRNA-tracrRNA complex concentration ranging from 50 to 200 ng/µL, all presented effective editing of BMP15 in porcine oocytes, and the 125 ng/µL crRNA-tracrRNA complex presented the highest editing efficiency (39.23 ± 3.33%). Surprisingly, we found approximately 95% edited oocytes presented monoallelic mutations, and only 5% edited oocytes harbored biallelic mutations. Interestingly, the coinjected two crRNAs guided the ctRNP complex to concurrently cut within a 10 bp window of the PAM (protospacer adjacent motif), resulting in a precise deletion within BMP15 in 85.9% edited oocytes, and additional deletion happened in 14.1% edited oocytes, which resulted in large fragment deletions in BMP15. Most deletions caused frameshift and introduced premature stop codon in BMP15, resulting in the disruption of BMP15 protein expression, which was confirmed by the Western blot analysis showing the reduced BMP15 protein expression in ctRNP injected oocytes. The disruption of BMP15 attenuated the activation of SMAD1/5/8 signaling, and impaired cumulus expansion of porcine cumulus cell-oocyte complexes (COCs). Our study proved that delivering CRISPR ctRNP into porcine oocytes by microinjection was able to edit BMP15 efficiently, providing a new strategy to investigate the functions of oocyte-specific secreted factors in oocyte in vitro maturation.


Assuntos
Proteína Morfogenética Óssea 15 , Oócitos , Suínos , Feminino , Animais , Proteína Morfogenética Óssea 15/genética , Microinjeções/veterinária , Oócitos/fisiologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Células do Cúmulo/fisiologia , Mamíferos
4.
Front Cell Dev Biol ; 10: 915898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274842

RESUMO

Quercetin (QUE) is a component of the flavonoid family that shows various therapeutic properties, such as antioxidant effects. However, whether QUE affects porcine oocyte in vitro aging has not yet been investigated. Therefore, in this study, we applied various doses of QUE to freshly isolated porcine oocytes and found that 10 µM QUE improved the oocyte maturation rate in vitro, as reflected by the increased degree of cumulus cell expansion and first polar body extrusion. More importantly, we found that QUE reduced in vitro aging and improved the maturity level of porcine oocytes after another 24 h of culturing, accompanied by the upregulated expression levels of bone morphogenetic protein 15, growth differentiation factor 9, Moloney sarcoma oncogene, and cyclin-dependent kinase 2. In addition, we found that QUE treatment significantly reduced the intracellular reactive oxygen species levels, apoptosis, and autophagy and upregulated the expression levels of superoxide dismutase 2 and catalase in aged porcine oocytes. In addition, QUE restored impaired mitochondrial membrane potential and spindle assembly in aged porcine oocytes. Our findings demonstrate that QUE can protect porcine oocytes from in vitro aging by reducing oxidative stress and maintaining mitochondrial function.

5.
Microb Pathog ; 147: 104379, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32649964

RESUMO

Clostridium perfringens beta2 (CPB2) toxin is an important virulence factor that causes enteric diseases in both humans and animals. To investigate the underlying mechanism in CPB2-induced inflammation and damage in the small intestinal epithelium, intestinal porcine epithelial cells (IPEC-J2) were treated with recombinant CPB2 (rCPB2) toxin. The results showed that IPEC-J2 cell viability was decreased by rCPB2 toxin treatment in a dose- and time-dependent manner. Analysis of cell morphology and Annexin V-FTIC/PI staining revealed that rCPB2 toxin induces cell apoptosis. Indeed, the expression of caspase-3, caspase-8, and caspase-9 was significantly increased at both the mRNA and protein levels in IPEC-J2 cells treated with rCPB2 toxin. The caspase-3 inhibitor Ac-DEVD-CHO reduced rCPB2 toxin-induced cell apoptosis. Moreover, exposure to the toxin increased the expression of interleukin (IL)-6, IL-7, IL-12, and IL-1ß, while decreasing that of transforming growth factor beta 1 (TGFß1). Additionally, rCPB2 toxin treatment also induced intestinal barrier dysfunction, as evidenced by the degradation of zonula occludens (ZO)-1, claudin-1, and E-cadherin, as well as an increase in paracellular permeability. Overall, the results indicated that rCPB2 toxin induces apoptosis and inflammation, in addition to impairing intestinal barrier function in IPEC-J2 cells. Our findings provide a foundation to better understand the pathogenesis of C. perfringens infection and inform strategies to effectively prevent and treat C. perfringens-induced enteric diseases.


Assuntos
Clostridium perfringens , Células Epiteliais , Animais , Apoptose , Linhagem Celular , Humanos , Inflamação , Mucosa Intestinal , Suínos
6.
Exp Ther Med ; 18(3): 2160-2166, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31452707

RESUMO

Lipodystrophic patients have an adipose tissue triglyceride storage defect that causes ectopic lipid accumulation, leading to severe insulin resistance. The present study investigated the potential role of isoimperatorin on 3T3-L1 adipocyte differentiation. mRNA and protein levels of differentiation- and lipid accumulation-associated genes, as well as the adipogenesis-related signaling pathway were analyzed in control and isoimperatorin-treated differentiated 3T3-L1 adipocytes using reverse transcription-quantitative PCR and western blot analysis. Results determined that isoimperatorin promoted 3T3-L1 fibroblast adipogenesis in a dose-dependent manner compared with standard differentiation inducers. Isoimperatorin significantly increased mRNA and protein expression of the crucial adipogenic transcription factors peroxisome proliferator activated receptor-γ (PPARγ) and CCAAT enhancer binding protein-α (C/EBPα). mRNA expression of the downstream adipogenesis-related genes sterol regulatory element-binding transcription factor 1c, adipocyte protein 2, fatty acid synthase, adiponectin and diacylglycerol O-acyltransferase 2 were also significantly increased following isoimperatorin treatment. The underlying mechanism likely involved activation of the Akt signaling pathway. Taken together, the present findings indicated that isoimperatorin may alter PPARγ and C/EBPα expression via the Akt signaling pathway, resulting in promotion of adipogenesis. The results highlighted the potential use of isoimperatorin as a therapeutic agent for preventing diabetes.

7.
Animals (Basel) ; 9(5)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126046

RESUMO

C. perfringens type C can induce enteritis accompanied by diarrhea and annually causes significant economic losses to the global pig industry. The pathogenic mechanisms of C. perfringens type C in pigs are still largely unknown. To investigate this, we challenged seven-day-old piglets with C. perfringens type C to cause diarrhea. We performed hematoxylin & eosin (H&E) staining of the small intestine (including duodenum, jejunum, and ileum) and assessed gene expression in the ileal tissue. H&E staining of the duodenum, jejunum, and ileum demonstrated inflammation and edema of the lamina propria and submucosa. A total of 2181 differentially expressed genes (DEGs) were obtained in ileal tissues. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of DEGs indicated that the main pathways were enriched in the T cell receptor signaling pathway, NF-kappa B signaling pathway, and (tumor necrosis factor) TNF signaling pathway. These results provide insights into the pathogenicity of C. perfringens type C and improve our understanding of host-bacteria interactions.

8.
PeerJ ; 6: e5997, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533301

RESUMO

BACKGROUND: Clostridium perfringens (C. perfringens) type C is the most common bacteria causing piglet diarrheal disease and it greatly affects the economy of the global pig industry. The spleen is an important immune organ in mammals; it plays an irreplaceable role in resisting and eradicating pathogenic microorganisms. Based on different immune capacity in piglets, individuals display the resistance and susceptibility to diarrhea caused by C. perfringens type C. Recently, long non-coding RNA (lncRNA) and mRNA have been found to be involved in host immune and inflammatory responses to pathogenic infections. However, little is known about spleen transcriptome information in piglet diarrhea caused by C. perfringens type C. METHODS: Hence, we infected 7-day-old piglets with C. perfringens type C to lead to diarrhea. Then, we investigated lncRNA and mRNA expression profiles in spleens of piglets, including control (SC), susceptible (SS), and resistant (SR) groups. RESULTS: As a result, 2,056 novel lncRNAs and 2,417 differentially expressed genes were found. These lncRNAs shared the same characteristics of fewer exons and shorter length. Bioinformatics analysis identified that two lncRNAs (ALDBSSCT0000006918 and ALDBSSCT0000007366) may be involved in five immune/inflammation-related pathways (such as Toll-like receptor signaling pathway, MAPK signaling pathway, and Jak-STAT signaling pathway), which were associated with resistance and susceptibility to C. perfringens type C infection. This study contributes to the understanding of potential mechanisms involved in the immune response of piglets infected with C. perfringens type C.

9.
FEBS Open Bio ; 8(10): 1722-1732, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30338222

RESUMO

Clostridium perfringens type C is a pathogen that causes necrotizing enteritis (NE), which is an intestinal tract disease in piglets. The pathogenesis of C. perfringens type C-induced NE is still unclear, leading to a lack of effective therapies. Earlier studies have reported that circular RNAs (circRNAs) are involved in the pathogenic processes of various diseases. However, it is not known if circRNAs in spleen play a role in C. perfringens type C infection in NE. To address this question, we infected 7-day-old piglets with C. perfringens type C to induce NE. Hematoxylin and eosin staining of small intestine revealed inflammation, atrophy and shedding of intestinal villi, and intestinal mucosal necrosis. We observed increased expression of cytokine genes (such as IL-1ß and IL-6) and inflammation in the spleen. In addition, we used RNA-seq and bioinformatics analysis to examine changes in circRNA expression. A total of 103 circRNAs were found to be differentially expressed in NE, and Gene Ontology analysis revealed that the genes producing differentially expressed circRNAs were enriched in regulation of the cellular metabolic process protein binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the genes producing differentially expressed circRNAs were involved in the tumor necrosis factor signaling pathway, T cell receptor signaling pathway and nuclear factor-κB signaling pathway. Finally, we found eight circRNAs (including circ_0002220 and circ_0000821) that are related to NE. Therefore, our study provides new insights into the mechanisms underlying C. perfringens type C infection in piglets.

10.
Mitochondrial DNA B Resour ; 3(2): 864-865, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-33474346

RESUMO

The complete mitochondrial genome sequence of the Qinghai Tibetan pig was first determined in this study. The total length of the mitogenome is 16,720 bp. Indicating the an A + T(60.5%)-rich feature, including 2 ribosomal RNA genes, 13 protein-coding genes. 22 transfer RNA genes and 1 non-coding control region. The NJ phylogenetic tree analysis showed that the phylogenetic relationship between Qinghai Tibetan pig and Yimenghei pig was the closest, and the relationship with Chinese northeas wildboar was farthest.

11.
Mitochondrial DNA B Resour ; 3(2): 1161-1162, 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33474451

RESUMO

Diqing pig is one of the famous native breed in China. In this work, we reported the complete mitochondrial genome sequence of the Diqing pig in Hunan Province for the first time. The total length of the mitogenome is 16,720 bp. The NJ phylogenetic tree analysis showed that Diqing pig together with Chinese animals, and the farthest genetic distance from Landrace, has the closest genetic distance to Ganzi pig.

12.
Int J Mol Sci ; 18(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481288

RESUMO

It is well-documented that CL316,243 (a ß3 agonist) or rosiglitazone (a PPARγ agonist) can induce white adipocyte populations to brown-like adipocytes, thus increasing energy consumption and combating obesity. However, whether there is a combined effect remains unknown. In the present study, stromal vascular cells of inguinal white adipose tissue (iWAT-SVCs for short) from mice were cultured and induced into browning by CL316,243, rosiglitazone, or both. Results showed that a combination of CL316,243 and rosiglitazone significantly upregulated the expression of the core thermogenic gene Ucp1 as well as genes related with mitochondrial function (Cidea, Cox5b, Cox7a1, Cox8b, and Cycs), compared with the treatment of CL316,243 or rosiglitazone alone. Moreover, co-treatment with rosiglitazone could reverse the downregulation of Adiponectin resulting from CL316,243 stimuli alone. Taken together, a combination of rosiglitazone and CL316,243 can produce an additive effect of promoting thermogenic gene expression and an improvement of insulin sensitivity in mouse iWAT-SVCs.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Adipogenia , Hipoglicemiantes/farmacologia , Mitocôndrias/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Adiponectina/genética , Adiponectina/metabolismo , Animais , Células Cultivadas , Dioxóis/farmacologia , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Rosiglitazona , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA