Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Respir Physiol Neurobiol ; 327: 104303, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029565

RESUMO

The airway epithelium is located at the interactional boundary between the external and internal environments of the organism and is often exposed to harmful environmental stimuli. Inflammatory response that occurs after airway epithelial stress is the basis of many lung and systemic diseases. Chloride intracellular channel 4 (CLIC4) is abundantly expressed in epithelial cells. The purpose of this study was to investigate whether CLIC4 is involved in the regulation of lipopolysaccharide (LPS)-induced inflammatory response in airway epithelial cells and to clarify its potential mechanism. Our results showed that LPS induced inflammatory response and decreased CLIC4 levels in vivo and in vitro. CLIC4 silencing aggravated the inflammatory response in epithelial cells, while overexpression of CLIC4 combined with LPS exposure significantly decreased the inflammatory response compared with cells exposed to LPS without CLIC4 overexpression. By labeling intracellular chloride ions with chloride fluorescent probe MQAE, we showed that CLIC4 mediated intracellular chloride ion-regulated LPS-induced cellular inflammatory response.

2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928413

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that significantly impacts quality of life by disrupting CD4+ T cell immune homeostasis. The identification of a low-side-effect drug for RA treatment is urgently needed. Our previous study suggests that Trichinella spiralis paramyosin (Ts-Pmy) has immunomodulatory effects, but its potential effect on CD4+ T cell response in RA remains unclear. In this study, we used a murine model to investigate the role of rTs-Pmy in regulating CD4+ T cell differentiation in collagen-induced arthritis (CIA). Additionally, we assessed the impact of rTs-Pmy on CD4+ T cell differentiation towards the Th1 and Th17 phenotypes, which are associated with inflammatory responses in arthritis, using in vitro assays. The results demonstrated that rTs-Pmy administration reduced arthritis severity by inhibiting Th1 and Th17 response while enhancing Treg response. Prophylactic administration of Ts-Pmy showed superior efficacy on CIA compared to therapeutic administration. Furthermore, in vitro assays demonstrated that rTs-Pmy could inhibit the differentiation of CD4+ T cells into Th1 and Th17 while inducing the production of Tregs, suggesting a potential mechanism underlying its therapeutic effects. This study suggests that Ts-Pmy may ameliorate CIA by restoring the immune balance of CD4+ T cells and provides new insights into the mechanism through which helminth-derived proteins exert their effects on autoimmune diseases.


Assuntos
Artrite Experimental , Linfócitos T CD4-Positivos , Diferenciação Celular , Células Th17 , Trichinella spiralis , Tropomiosina , Animais , Trichinella spiralis/imunologia , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Experimental/tratamento farmacológico , Camundongos , Diferenciação Celular/efeitos dos fármacos , Tropomiosina/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th1/imunologia , Masculino , Proteínas de Helminto/farmacologia , Proteínas de Helminto/uso terapêutico , Proteínas de Helminto/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/tratamento farmacológico , Linfócitos T Reguladores/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos DBA
3.
Biomolecules ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785984

RESUMO

Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases.


Assuntos
Ubiquitina-Proteína Ligases Nedd4 , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Doenças do Sistema Digestório/metabolismo , Doenças do Sistema Digestório/patologia , Animais , Transdução de Sinais , Proliferação de Células , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
BMJ Open Diabetes Res Care ; 12(3)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719509

RESUMO

INTRODUCTION: This study aimed to assess the causal relationship between diabetes and frozen shoulder by investigating the target proteins associated with diabetes and frozen shoulder in the human plasma proteome through Mendelian randomization (MR) and to reveal the corresponding pathological mechanisms. RESEARCH DESIGN AND METHODS: We employed the MR approach for the purposes of establishing: (1) the causal link between diabetes and frozen shoulder; (2) the plasma causal proteins associated with frozen shoulder; (3) the plasma target proteins associated with diabetes; and (4) the causal relationship between diabetes target proteins and frozen shoulder causal proteins. The MR results were validated and consolidated through colocalization analysis and protein-protein interaction network. RESULTS: Our MR analysis demonstrated a significant causal relationship between diabetes and frozen shoulder. We found that the plasma levels of four proteins were correlated with frozen shoulder at the Bonferroni significance level (p<3.03E-5). According to colocalization analysis, parathyroid hormone-related protein (PTHLH) was moderately correlated with the genetic variance of frozen shoulder (posterior probability=0.68), while secreted frizzled-related protein 4 was highly correlated with the genetic variance of frozen shoulder (posterior probability=0.97). Additionally, nine plasma proteins were activated during diabetes-associated pathologies. Subsequent MR analysis of nine diabetic target proteins with four frozen shoulder causal proteins indicated that insulin receptor subunit alpha, interleukin-6 receptor subunit alpha, interleukin-1 receptor accessory protein, glutathione peroxidase 7, and PTHLH might contribute to the onset and progression of frozen shoulder induced by diabetes. CONCLUSIONS: Our study identified a causal relationship between diabetes and frozen shoulder, highlighting the pathological pathways through which diabetes influences frozen shoulder.


Assuntos
Bursite , Análise da Randomização Mendeliana , Proteoma , Humanos , Proteoma/análise , Bursite/sangue , Bursite/genética , Bursite/etiologia , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Mapas de Interação de Proteínas , Prognóstico , Masculino , Diabetes Mellitus/genética , Diabetes Mellitus/sangue , Feminino
5.
Nano Lett ; 24(5): 1660-1666, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266180

RESUMO

Scalable and addressable integrated manipulation of qubits is crucial for practical quantum information applications. Different waveguides have been used to transport the optical and electrical driving pulses, which are usually required for qubit manipulation. However, the separated multifields may limit the compactness and efficiency of manipulation and introduce unwanted perturbation. Here, we develop a tapered fiber-nanowire-electrode hybrid structure to realize integrated optical and microwave manipulation of solid-state spins at nanoscale. Visible light and microwave driving pulses are simultaneously transported and concentrated along an Ag nanowire. Studied with spin defects in diamond, the results show that the different driving fields are aligned with high accuracy. The spatially selective spin manipulation is realized. And the frequency-scanning optically detected magnetic resonance (ODMR) of spin qubits is measured, illustrating the potential for portable quantum sensing. Our work provides a new scheme for developing compact, miniaturized quantum sensors and quantum information processing devices.

6.
Angew Chem Int Ed Engl ; 62(47): e202309709, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37814137

RESUMO

Metal-catalyzed C-H activation strategies provide an efficient approach for synthesis by minimizing atom, step, and redox economy. Developing milder, greener, and more effective protocols for these strategies is always highly desirable to the scientific community. In this study, the utilization of a single rhodium complex enabled the visible-light-induced late-stage C-H activation of biaryl-type phosphines with alkynyl bromides, employing inherent phosphorus atoms as directing groups. This chemistry combines P(III)-directed C-H activation with visible light photocatalysis, under exogenous photosensitizer-free conditions, offering a unique platform for ligand design and preparation. Furthermore, this study also explores the asymmetric catalysis and coordination chemistry of the resulting P-alkyne hybrid ligands with specific transition metals. Experimental results and density functional theory calculations demonstrate the mechanistic intricacies of this transformation.

7.
Sci Adv ; 9(40): eadg9376, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792938

RESUMO

Neuromorphic computing has shown remarkable capabilities in silicon-based artificial intelligence, which can be optimized by using Mott materials for functional synaptic connections. However, the research efforts focus on two-terminal artificial synapses and envisioned the networks controlled by silicon-based circuits, which is difficult to develop and integrate. Here, we propose a dynamic network with laser-controlled conducting filaments based on electric field-induced local insulator-metal transition of vanadium dioxide. Quantum sensing is used to realize conductivity-sensitive imaging of conducting filament. We find that the location of filament formation is manipulated by focused laser, which is applicable to simulate the dynamical synaptic connections between the neurons. The ability to process signals with both long-term and short-term potentiation is further demonstrated with ~60 times on/off ratio while switching the pathways. This study opens the door to the development of dynamic network structures depending on easily controlled conduction pathways, mimicking the biological nervous systems.

8.
J Cell Mol Med ; 27(23): 3760-3772, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698050

RESUMO

Neonatal respiratory system disease is closely associated with embryonic lung development. Our group found that integrin ß4 (ITGB4) is downregulated in the airway epithelium of asthma patients. Asthma is the most common chronic respiratory illness in childhood. Therefore, we suspect whether the deletion of ITGB4 would affect fetal lung development. In this study, we characterized the role of ITGB4 deficiency in bronchopulmonary dysplasia (BPD). ITGB4 was conditionally knocked out in CCSP-rtTA, Tet-O-Cre and ITGB4f/f triple transgenic mice. Lung tissues at different developmental stages were collected for experimental detection and transcriptome sequencing. The effects of ITGB4 deficiency on lung branching morphogenesis were observed by fetal mouse lung explant culture. Deleting ITGB4 from the airway epithelial cells results in enlargement of alveolar airspaces, inhibition of branching, the abnormal structure of epithelium cells and the impairment of cilia growth during lung development. Scanning electron microscopy showed that the airway epithelial cilia of the ß4ccsp.cre group appear to be sparse, shortened and lodging. Lung-development-relevant factors such as SftpC and SOX2 significantly decreased both mRNA and protein levels. KEGG pathway analysis indicated that multiple ontogenesis-regulating-relevant pathways converge to FAK. Accordingly, ITGB4 deletion decreased phospho-FAK, phospho-GSK3ß and SOX2 levels, and the correspondingly contrary consequence was detected after treatment with GSK3ß agonist (wortmannin). Airway branching defect of ß4ccsp.cre mice lung explants was also partly recovered after wortmannin treatment. Airway epithelial-specific deletion of ITGB4 contributes to lung developmental defect, which could be achieved through the FAK/GSK3ß/SOX2 signal pathway.


Assuntos
Asma , Displasia Broncopulmonar , Integrina beta4 , Animais , Humanos , Recém-Nascido , Camundongos , Asma/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Pulmão/metabolismo , Camundongos Transgênicos , Wortmanina/metabolismo
9.
J Tradit Chin Med ; 43(5): 973-982, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37679985

RESUMO

OBJECTIVE: To investigate the effects of acupoint catgut embedding for 3 weeks on lung tissue, blood immunoglobulin E (IgE) and interleutin-4 (IL-4), brain tissue microglia x-42 (OX-42) and toll-like receptor-2 (TLR-2) in rats with allergic rhinitis of lung deficiency type. METHODS: Forty-five female Sprague-Dawley rats were randomly divided for two times. The first time, they were randomly divided into model group and blank group (Group C) according to 2:1, and the second time, the model group were randomly divided into model control group (Group B) and intervention treatment group (Group A) according to 1:1. 15 in each group. For Group A and Group B, the lung deficiency model was made by "sulfur-moxa fumigation", and then the allergic rhinitis model was established by "ovalbumin (OVA) sensitization". Then catgut embedding was performed at acupoints in Group A and not in Group B. After 3 weeks, collect lung tissue samples for hematoxylin-eosin staining, then take blood to observe the concentration of IgE and IL-4, and finally take brain tissue to observe the results of OX-42 and TLR-2. RESULTS: IgE level (µg/mL) was (3.11 ± 0.20) in the Group A, (4.19 ± 0.44) in the Group B, and (2.29 ± 0.30) in the Group C (all < 0.001). IL-4 level (pg/mL) was (14.2 ± 0.7) in the Group A, (18.6 ± 2.4) in the Group B, and (11.4 ± 1.2) for the Group C (all < 0.001). The mean OD for OX-42 is (0.1728 ± 0.0016) in the Group A, (0.1810 ± 0.0046) in the Group B and (0.1674 ± 0.0025) in the Group C (all < 0.001). CONCLUSION: Although 3 weeks of acupoint catgut embedding already showed obvious efficacy on rats with allergic rhinitis, the allergic reaction in the body still continued. To achieve further treatment, prolonging the catgut embedding time is necessary.


Assuntos
Rinite Alérgica , Receptor 2 Toll-Like , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Categute , Interleucina-4 , Rinite Alérgica/terapia , Encéfalo , Imunoglobulina E , Pulmão
10.
J Hepatocell Carcinoma ; 10: 1085-1103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483310

RESUMO

Purpose: Hepatocellular carcinoma(HCC) is the most common type of liver cancer and the sixth largest common cancer worldwide. Although surgical resection, hepatic arterial chemoembolization, targeted drugs and immunotherapy are currently available, the mortality of advanced patients remains high. Therefore, new therapeutic targets are urgently needed. In recent years, many studies have found that The long non-coding RNA(lncRNA) has multiple functions in human tumors, including participating in epigenetic, transcriptional, post-transcriptional and translational regulation, and is closely related to the progression of HCC. The purpose of this study was to investigate the role of AC006329.1 in HCC progression and provide theoretical guidance for finding new targets. Patients and Methods: AC006329.1 was screened out by transcriptome sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). Then a series of functional tests in vivo and in vitro were conducted to investigate the effects of AC006329.1 on HCC progression and metastasis. Epithelial-mesenchymal transformation (EMT) of HCC was detected by Western blot and immunofluorescence staining. The targeted miRNA and downstream gene of AC006329.1 were predicted by databases and the pathway regulation axis eventually validated by dual luciferase reporter assays, qRT-PCR and WB. Results: AC006329.1 was found high expressed in HCC tissues and cell lines by qRT-PCR. The prognosis of HCC patients with high expressed AC006329.1 was poor. In vitro and in vivo, overexpression of AC006329.1 can promote the progression, metastasis and EMT of HCC by acting as a sponge of miR-127-5p to increase the expression of SHC3. In addition, up-regulation of miR-127-5p or knockdown of SHC3 can both reverse the promoting effects of AC006329.1 on progression, metastasis and EMT of HCC. Finally, WB and qRT-PCR analysis was discovered that AC006329.1 can facilitate HCC progression, EMT and metastasis by competitively inhibiting miR-127-5p to activate SHC3/ERK signaling pathway. Conclusion: These above experimental results confirmed that AC006329.1 can facilitate HCC progression, EMT and metastasis by acting as a competing endogenous RNA (ceRNA) to inhibit miR-127-5p and activate SHC3/ERK signaling pathway.

11.
Immunol Res ; 71(6): 800-813, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37291329

RESUMO

Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.


Assuntos
Proteínas NLR , Ubiquitina , Ligases , Imunidade Inata , Receptores Toll-Like
12.
J Nat Med ; 77(3): 496-507, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002508

RESUMO

Five new phenylethanoid glycosides integerrima A-E (1-5) were isolated from the stem of Callicarpa integerrima for the first time. Their structures were elucidated by extensive spectroscopic analyses. In addition, cytotoxicity, anti-adipogenic and antioxidant activities were evaluated. All the phenylethanoid glycosides would be nontoxic to the normal human hepatocytes LO-2 and pre-adipocytes 3T3-L1 cell lines, significantly promote the proliferation of normal hepatocytes, thus displaying the potential for hepatoprotective. Integerrima A (1), C (3) and D (4) exhibited selectively moderate cytotoxic activity against the hepatoma cell lines Bel-7402, with the IC50 value at 72.66, 80.43 and 84.88 µmol/L, respectively. Moreover, integerrima D (4) had significant activities on reducing lipid droplet formation, with the inhibition rate of 48.02% on the concentration of 200 µg/mL. Finally, the result of FRAP assays exhibited remarkable antioxidant activity in integerrima E (5), which was close to the positive control ascorbic acid with the concentration of 100 µg/mL.


Assuntos
Antineoplásicos , Callicarpa , Humanos , Glicosídeos/farmacologia , Glicosídeos/química , Callicarpa/química , Estrutura Molecular
13.
Oncogene ; 42(18): 1453-1465, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36922676

RESUMO

We aimed to investigate the protumor mechanisms of platelets in pancreatic ductal adenocarcinoma (PDAC). Serum samples were collected from 656 PDAC patients and 3105 healthy people, and a Panx1 knockout tumor model and an adoptive platelet transfusion mouse model were established. We showed that the blood platelet counts were not significantly different between stage III/IV and stage I/II patients, while the number of the CD41+/CD62P+ platelets was significantly elevated in stage III/IV patients, indicating that CD41+/CD62P+ platelets are associated with a poor prognosis. Further analysis showed that a high level of CD41+/CD62P+ platelets was significantly correlated with microvascular invasion (P = 0.002), advanced 8th edition AJCC stage (P < 0.001), and a high CA19-9 level (P = 0.027) and independently predicted a poor prognosis for resectable I/II PDAC. Furthermore, we found significantly higher Panx1 expression in CD41+/CD62P+ platelets than in CD41+/CD62P- platelets in PDAC patients. Mechanistically, Panx1 was able to enhance IL-1ß secretion in CD41+/CD62P+ platelets by phosphorylating p38 MAPK and consequently promoted the invasion and metastasis of PDAC cells. Finally, we synthesized a novel compound named PC63435 by the ligation of carbenoxolone (a Panx1 inhibitor) and PSGL-1 (a CD62P ligand). PC63435 specifically bound to CD41+/CD62P+ platelets, then blocked the Panx1/IL-1ß pathway and reduced the proportion of CD41+/CD62P+ platelets, which suppressed PDAC tumor invasion and metastasis in vivo. These results demonstrated that the Panx1/IL-1ß axis in CD41+/CD62P+ platelets enhanced PDAC cell malignancy and that this axis may be a promising target for PDAC therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Plaquetas/metabolismo , Carcinoma Ductal Pancreático/patologia , Conexinas/genética , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
14.
Cell Death Dis ; 14(2): 88, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750550

RESUMO

Osteoblast apoptosis plays an important role in age-related bone loss and osteoporosis. Our previous study revealed that advanced oxidation protein products (AOPPs) could induce nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived reactive oxygen species (ROS) production, cause mitochondrial membrane potential (ΔΨm) depolarization, trigger the mitochondria-dependent intrinsic apoptosis pathway, and lead to osteoblast apoptosis and ultimately osteopenia and bone microstructural destruction. In this study, we found that AOPPs also induced mitochondrial ROS (mtROS) generation in osteoblastic MC3T3-E1 cells, which was closely related to NOX-derived ROS, and aggravated the oxidative stress condition, thereby further promoting apoptosis. Removing excessive ROS and damaged mitochondria is the key factor in reversing AOPP-induced apoptosis. Here, by in vitro studies, we showed that rapamycin further activated PINK1/Parkin-mediated mitophagy in AOPP-stimulated MC3T3-E1 cells and significantly alleviated AOPP-induced cell apoptosis by eliminating ROS and damaged mitochondria. Our in vivo studies revealed that PINK1/Parkin-mediated mitophagy could decrease the plasma AOPP concentration and inhibit AOPP-induced osteoblast apoptosis, thus ameliorating AOPP accumulation-related bone loss, bone microstructural destruction and bone mineral density (BMD) loss. Together, our study indicated that therapeutic strategies aimed at upregulating osteoblast mitophagy and preserving mitochondrial function might have potential for treating age-related osteoporosis.


Assuntos
Produtos da Oxidação Avançada de Proteínas , Mitofagia , Produtos da Oxidação Avançada de Proteínas/metabolismo , Apoptose , Osteoblastos/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos
15.
Curr Med Chem ; 30(40): 4569-4585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36642878

RESUMO

Matrix metalloproteinases (MMPs) are a family of zinc-containing proteases that participate in many physiological and pathological processes in vivo. Recently, the MMP network has been established according to a deeper understanding of its functions. Some MMPs have been also regarded as biomarkers of various diseases, including inflammation, nerve diseases, and cancers. MMP labelling has been thus paid more attention in recent decades. Accordingly, both reagents and technologies for MMP labelling have been rapidly developed. Here we summarize the recent development of some MMP labelling methods. This review was identified through keyword (MMPs; labelling; etc.) searches in the ScienceDirect database, Scifinder, Web of Science, and PubMed for which typical cases were used for an inductive overview. In spite of the advances in MMP labelling, selective labelling of a specific MMP is still an open issue. We hope that this article can be helpful in developing specific MMP labelling methods in future.


Assuntos
Metaloproteinases da Matriz , Neoplasias , Humanos , Inflamação
16.
Sci Total Environ ; 859(Pt 1): 160001, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368385

RESUMO

Highly efficient and stable heterogeneous catalysts were desired to activate periodate (PI) for sustainable pollution control. Herein, iron-nitrogen-carbon catalyst was synthesized using a facile molten-salts mediated pyrolysis strategy (denoted as FeNC-MS) and employed to activate PI for the degradation of acetaminophen (ACE). Compared with iron-nitrogen-carbon catalyst prepared by direct pyrolysis method (marked as FeNC), FeNC-MS exhibited superior catalytic activity due to its large specific surface area (1600 m2 g-1) and the abundance of FeNx sites. The batch experiments revealed that FeNC/PI process achieved 37 % ACE removal within 20 min, while ACE removal in FeNC-MS/PI process was 98 % under the identical conditions. Integrated with electron paramagnetic resonance tests, quenching experiments, chemical probe identification, and electrochemical experiments, we demonstrated that FeNC-MS-PI complexes-mediated electron transfer was the predominant mechanism for the oxidation of ACE. Further analysis disclosed that FeNx sites in FeNC-MS were the main active sites for the activation of PI. Additionally, FeNC-MS/PI process exhibited significant resistance to humic acid and background electrolyte, and avoided the secondary pollution imposed by Fe leaching. The possible degradation pathways of ACE were proposed. The germination experiments of lettuce seeds showed that the ecotoxicity of ACE solution was significantly reduced after treatment with FeNC-MS/PI process. Overall, this study provided a facile strategy for the synthesis of efficient iron-nitrogen-carbon catalysts and gained fundamental insight into the mechanism of PI activation by iron-nitrogen-carbon catalysts for pollutants degradation.


Assuntos
Carbono , Nitrogênio , Nitrogênio/química , Carbono/química , Ferro/química , Acetaminofen/química , Peróxidos/química , Sais
17.
Liver Int ; 43(1): 234-248, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36203339

RESUMO

BACKGROUND AND AIMS: Apolipoprotein A-1 (ApoA-1), the major apolipoprotein of high-density lipoprotein, plays anti-atherogenic role in cardiovascular diseases and exerts anti-inflammation effect in various inflammatory and infectious diseases. However, the role and mechanism of ApoA-1 in hepatic ischaemia-reperfusion (I/R) injury is unknown. METHODS: In this study, we measured ApoA-1 expression in human liver grafts after transplantation. Mice partial hepatic I/R injury model was made in ApoA-1 knockout mice, ApoA-1 mimetic peptide D-4F treatment mice and corresponding control mice to examine the effect of ApoA-1 on liver damage, inflammation response and cell death. Primary hepatocytes and macrophages were isolated for in vitro study. RESULTS: The results showed that ApoA-1 expression was down-regulated in human liver grafts after transplantation and mice livers subjected to hepatic I/R injury. ApoA-1 deficiency aggravated liver damage and inflammation response induced by hepatic I/R injury. Interestingly, we found that ApoA-1 deficiency increased pyroptosis instead of apoptosis during acute phase of hepatic I/R injury, which mainly occurred in macrophages rather than hepatocytes. The inhibition of pyroptosis compensated for the adverse impact of ApoA-1 deficiency. Furthermore, the up-regulated pyroptosis process was testified to be mediated by ApoA-1 through TLR4-NF-κB pathway and TLR4 inhibition significantly improved hepatic I/R injury. In addition, we confirmed that D-4F ameliorated hepatic I/R injury. CONCLUSIONS: Our study has identified the protective role of ApoA-1 in hepatic I/R injury through inhibiting pyroptosis in macrophages via TLR4-NF-κB pathway. The effect of ApoA-1 may provide a novel therapeutic approach for hepatic I/R injury.


Assuntos
Hepatopatias , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Apolipoproteína A-I/farmacologia , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/uso terapêutico , Piroptose , Receptor 4 Toll-Like , Transdução de Sinais , Fígado/metabolismo , Hepatopatias/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Macrófagos/metabolismo
18.
J Hazard Mater ; 439: 129613, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35863233

RESUMO

Manganese oxide-activated persulfate plays a critical role in water purification and in situ chemical oxidation processes, but the underlying mechanism needs to be further revealed. Herein, the detailed mechanism of MnO2 with various crystallographic structures (α-, ß-, γ-, and δ-MnO2) towards peroxymonosulfate (PMS) activation was investigated. PMS activated by tunnel structured α-, ß-, and γ-MnO2 showed higher acetaminophen (ACE) removal than layer structured δ-MnO2 with the removal efficiency following an order of α-MnO2 (85%) ≈ Î³-MnO2 (84%) > ß-MnO2 (65%) > Î´-MnO2 (31%). Integrated with chemical quenching experiments, electron paramagnetic resonance, Raman spectra, X-ray photoelectron spectroscopy, and Langmuir-Hinshelwood model on kinetic data, both surface-bound PMS complexes and direct oxidation by surface manganese species (Mn(Ⅳ, Ⅲ)(s)) were disclosed as the dominant oxidation mechanism for ACE degradation in α-, ß-, and γ-MnO2/PMS, which were rarely observed in previous reports. Moreover, the catalytic activity of α-, ß-, and γ-MnO2 was positively correlated to the MnIII(s) content on the catalyst surface. Higher content of MnIII(s) would stimulate the generation of more oxygen vacancies, which was conducive to the adsorption of PMS and the formation of reactive complexes. Overall, this study might provide deeper insight into the nonradical activation mechanism of PMS over different crystallographic MnO2.

19.
Comput Intell Neurosci ; 2022: 2377664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665274

RESUMO

The exponential synchronization (ES) of Cohen-Grossberg stochastic neural networks with inertial terms (CGSNNIs) is studied in this paper. It is investigated in two ways. The first way is using variable substitution to transform the system to another one and then based on the properties of i t ^ o integral, differential operator, and the second Lyapunov method to get a sufficient condition of ES. The second way is based on the second-order differential equation, the properties of calculus are used to get a sufficient condition of ES. At last, results of the theoretical derivation are verified by virtue of two numerical simulation examples.


Assuntos
Algoritmos , Redes Neurais de Computação , Simulação por Computador , Processos Estocásticos , Fatores de Tempo
20.
Front Neurosci ; 16: 838786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527814

RESUMO

Although plenty of evidences from preclinical studies have led to potential treatments for patients with spinal cord injury (SCI), the failure to translate promising preclinical findings into clinical advances has long puzzled researchers. Thus, a more reliable combination of anatomical assessment and behavioral testing is urgently needed to improve the translational worth of preclinical studies. To address this issue, the present study was designed to relate magnetic resonance imaging (MRI)-based anatomical assessment to behavioral outcome in a rat contusion model. Rats underwent contusion with three different heights to simulate various severities of SCI, and their locomotive functions were evaluated by the grid-walking test, Louisville swim scale (LSS), especially catwalk gait analysis system and basic testing, and Basso, Beattie, Bresnahan (BBB) score. The results showed that the lesion area (LA) is a better indicator for damage assessment compared with other parameters in sagittal T2-weighted MRI (T2WI). Although two samples are marked as outliers by the box plot analysis, LA correlated closely with all of the behavioral testing without ceiling effect and floor effect. Moreover, with a moderate severity of SCI in a contusion height of 25 mm, the smaller the LA of the spinal cord measured on sagittal T2WI the better the functional performance, the smaller the cavity region and glial scar, the more spared the myelin, the higher the volatility, and the thicker the bladder wall. We found that LA significantly related with behavior outcomes, which indicated that LA could be a proxy of damage assessment. The combination of sagittal T2WI and four types of behavioral testing can be used as a reliable scheme to evaluate the prognosis for preclinical studies of SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA