Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Cancer Res ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312205

RESUMO

Primary cilia detect and transmit environmental signals into cells. Primary cilia are absent in a subset of ductal carcinomas characterized by distinctive biological activities, and recovery of cilia with normal functionality has been shown to have therapeutic potential in some cancer types. Therefore, elucidation of the underlying mechanism and clinical significance of ciliary loss in ductal carcinomas could help develop effective treatment strategies. Here, we identified a link between SHCBP1 and cilia in ductal carcinomas. Shcbp1 knockout in transgenic mice profoundly impeded tumor progression and metastasis, prolonging survival. Single-cell transcriptome analysis revealed a functional connection between SHCBP1 deficiency and increased tumor ciliogenesis. SHCBP1 ablation restored ciliogenesis in unciliated ductal carcinoma by promoting the proximity between the midbody remnant (MBR) and centrosome through enhanced Rab8 GTPase activity and Rab8GTP positioning within the MBR. Inhibition of tumor progression by SHCBP1 loss relied on the recovery of ciliogenesis. Analysis of a large cohort of patients with ductal carcinoma revealed a negative correlation between SHCBP1-induced ciliary loss and patient prognosis. Restoring ciliogenesis via SHCBP1 ablation elicited therapeutic effects in patient-derived xenograft models. Together, this study delineates that induction of MBR-centrosome proximity through SHCBP1-deficiency reactivates ciliogenesis, offering unique opportunities for the treatment of unciliated ductal carcinomas.

3.
Chin Med J (Engl) ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193700

RESUMO

BACKGROUND: Gastric cancer (GC), a malignant tumor with poor prognosis, is one of the leading causes of cancer-related deaths worldwide; consequently, identifying novel therapeutic targets is crucial for its corresponding treatment. NUF2, a component of the NDC80 kinetochore complex, promotes cancer progression in multiple malignancies. Therefore, this study aimed to explore the potential of NUF2 as a therapeutic target to inhibit GC progression. METHODS: Clinical samples from patients who underwent radical resection of GC at Lanzhou University Second Hospital from 2016 to 2021, cell count assays, colony formation assays, and cell-derived xenotransplantation (CDX) models were used to determine the effects of NUF2 on GC progression. Flow cytometry was used to detect the effect of NUF2 or quercetin on cell cycle progression and apoptosis. A live-cell time-lapse imaging assay was performed to determine the effect of NUF2 on the regulation of mitotic progression. Transcriptomics was used to investigate the NUF2-associated molecular mechanisms. Virtual docking and microscale thermophoresis were used to identify NUF2 inhibitors. Finally, CDX, organoid, and patient-derived xenograft (PDX) models were used to examine the efficacy of the NUF2 inhibitor in GC. RESULTS: NUF2 expression was significantly increased in GC and was negatively correlated with prognosis. The deletion of NUF2 suppressed GC progression both in vivo and in vitro. NUF2 significantly regulated the mitogen-activated protein kinase (MAPK) pathway, promoted G2/M phase transition, and inhibited apoptosis in GC cells. Additionally, quercetin was identified as a selective NUF2 inhibitor with low toxicity that significantly suppressed tumor growth in GC cells, organoids, CDX, and PDX models. CONCLUSIONS: Collectively, NUF2-mediated G2/M phase transition and apoptosis inhibition promoted GC progression; additionally, NUF2 inhibitors exhibited potent anti-GC activity. This study provides a new strategy for targeting NUF2 to suppress GC progression in clinical settings.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38305306

RESUMO

Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.

5.
Curr Cancer Drug Targets ; 24(9): 890-909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38275055

RESUMO

Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.


Assuntos
Autofagia , Imunoterapia , Ácido Mevalônico , Neoplasias , Microambiente Tumoral , Humanos , Autofagia/fisiologia , Ácido Mevalônico/metabolismo , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Imunoterapia/métodos , Animais
6.
Cancer Res ; 83(22): 3767-3782, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37646571

RESUMO

The chemotherapeutic agent 5-fluorouracil (5-FU) remains the backbone of postoperative adjuvant treatment for gastric cancer. However, fewer than half of patients with gastric cancer benefit from 5-FU-based chemotherapies owing to chemoresistance and limited clinical biomarkers. Here, we identified the SNF2 protein Polo-like kinase 1-interacting checkpoint helicase (PICH) as a predictor of 5-FU chemosensitivity and characterized a transcriptional function of PICH distinct from its role in chromosome separation. PICH formed a transcriptional complex with RNA polymerase II (Pol II) and ATF4 at the CCNA1 promoter in an ATPase-dependent manner. Binding of the PICH complex promoted cyclin A1 transcription and accelerated S-phase progression. Overexpressed PICH impaired 5-FU chemosensitivity in human organoids and patient-derived xenografts. Furthermore, elevated PICH expression was negatively correlated with survival in postoperative patients receiving 5-FU chemotherapy. Together, these findings reveal an ATPase-dependent transcriptional function of PICH that promotes cyclin A1 transcription to drive 5-FU chemoresistance, providing a potential predictive biomarker of 5-FU chemosensitivity for postoperative patients with gastric cancer and prompting further investigation into the transcriptional activity of PICH. SIGNIFICANCE: PICH binds Pol II and ATF4 in an ATPase-dependent manner to form a transcriptional complex that promotes cyclin A1 expression, accelerates S-phase progression, and impairs 5-FU chemosensitivity in gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Ciclina A1 , DNA Helicases/metabolismo , Fluoruracila/farmacologia , Adenosina Trifosfatases/uso terapêutico , Quinase 1 Polo-Like
7.
Gastroenterology ; 164(7): 1232-1247, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36842710

RESUMO

BACKGROUND & AIMS: Although small patient subsets benefit from current targeted strategies or immunotherapy, gemcitabine remains the first-line drug for pancreatic cancer (PC) treatment. However, gemcitabine resistance is widespread and compromises long-term survival. Here, we identified ubiquitin-conjugating enzyme E2T (UBE2T) as a potential therapeutic target to combat gemcitabine resistance in PC. METHODS: Proteomics and metabolomics were combined to examine the effect of UBE2T on pyrimidine metabolism remodeling. Spontaneous PC mice (LSL-KrasG12D/+, LSL-Trp53R172H/+, Pdx1-Cre; KPC) with Ube2t-conditional knockout, organoids, and large-scale clinical samples were used to determine the effect of UBE2T on gemcitabine efficacy. Organoids, patient-derived xenografts (PDX), and KPC mice were used to examine the efficacy of the combination of a UBE2T inhibitor and gemcitabine. RESULTS: Spontaneous PC mice with Ube2t deletion had a marked survival advantage after gemcitabine treatment, and UBE2T levels were positively correlated with gemcitabine resistance in clinical patients. Mechanistically, UBE2T catalyzes ring finger protein 1 (RING1)-mediated ubiquitination of p53 and relieves the transcriptional repression of ribonucleotide reductase subunits M1 and M2, resulting in unrestrained pyrimidine biosynthesis and alleviation of replication stress. Additionally, high-throughput compound library screening using organoids identified pentagalloylglucose (PGG) as a potent UBE2T inhibitor and gemcitabine sensitizer. The combination of gemcitabine and PGG diminished tumor growth in PDX models and prolonged long-term survival in spontaneous PC mice. CONCLUSIONS: Collectively, UBE2T-mediated p53 degradation confers PC gemcitabine resistance by promoting pyrimidine biosynthesis and alleviating replication stress. This study offers an opportunity to improve PC survival by targeting UBE2T and develop a promising gemcitabine sensitizer in clinical translation setting.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral , Neoplasias Pancreáticas
8.
Sci Adv ; 8(21): eabn3774, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613265

RESUMO

The diffuse-type gastric cancer (DGC) is a subtype of gastric cancer (GC) associated with low HER2 positivity rate and insensitivity to chemotherapy and immune checkpoint inhibitors. Here, we identify urokinase-type plasminogen activator receptor (uPAR) as a potential therapeutic target for DGC. We have developed a novel anti-uPAR monoclonal antibody, which targets the domains II and III of uPAR and blocks the binding of urokinase-type plasminogen activator to uPAR. We show that the combination of anti-uPAR and anti-Programmed cell death protein 1 (PD-1) remarkably inhibits tumor growth and prolongs survival via multiple mechanisms, using cell line-derived xenograft and patient-derived xenograft mouse models. Furthermore, uPAR chimeric antigen receptor-expressing T cells based on the novel anti-uPAR effectively kill DGC patient-derived organoids and exhibit impressive survival benefit in the established mouse models, especially when combined with PD-1 blockade therapy. Our study provides a new possibility of DGC treatment by targeting uPAR in a unique manner.


Assuntos
Receptor de Morte Celular Programada 1 , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Neoplasias Gástricas , Animais , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Humanos , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
9.
BMC Cancer ; 21(1): 1039, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530774

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a treatment-refractory malignancy with poor prognosis. It is urgent to identify novel and valid biomarkers to predict the progress and prognosis of PDAC. The S100A family have been identified as being involved in cell proliferation, migration and differentiation progression of various cancer types. However, the expression patterns and prognostic values of S100As in PDAC remain to be analyzed. METHODS: We investigated the transcriptional expressions, methylation level and prognostic value of S100As in PDAC patients from the Oncomine, GEPIA2, Linkedomics and cBioPortal databases. Real-time PCR was used to detect the expressions of S100A2/4/6/10/14/16 in four pancreatic cancer cell lines and pancreatic cancer tissues from PDAC patients undergoing surgery. To verify the results further, immunohistochemistry was used to measure the expression of S100A2/4/6/10/14/16 in 43 PDAC patients' tissue samples. The drug relations of S100As were analyzed by using the Drugbank database. RESULTS: The results suggested that, the expression levels of S100A2/4/6/10/14/16 were elevated to PDAC tissues than in normal pancreatic tissues, and the promoter methylation levels of S100A S100A2/4/6/10/14/16 in PDAC (n = 10) were lower compared with normal tissue (n = 184) (P < 0.05). In addition, their expressions were negatively correlated with PDAC patient survival. CONCLUSIONS: Taken together, these results suggest that S100A2/4/6/10/14/16 might be served as prognostic biomarkers for survivals of PDAC patients.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas S100/metabolismo , Adenocarcinoma/mortalidade , Anexina A2/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Fatores Quimiotáticos/metabolismo , Bases de Dados Genéticas , Progressão da Doença , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/mortalidade , Prognóstico , RNA Mensageiro/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteínas S100/genética , Transcrição Gênica
10.
Nat Commun ; 12(1): 2812, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990570

RESUMO

Trastuzumab is the backbone of HER2-directed gastric cancer therapy, but poor patient response due to insufficient cell sensitivity and drug resistance remains a clinical challenge. Here, we report that HER2 is involved in cell mitotic promotion for tumorigenesis by hyperactivating a crucial HER2-SHCBP1-PLK1 axis that drives trastuzumab sensitivity and is targeted therapeutically. SHCBP1 is an Shc1-binding protein but is detached from scaffold protein Shc1 following HER2 activation. Released SHCBP1 responds to HER2 cascade by translocating into the nucleus following Ser273 phosphorylation, and then contributing to cell mitosis regulation through binding with PLK1 to promote the phosphorylation of the mitotic interactor MISP. Meanwhile, Shc1 is recruited to HER2 for MAPK or PI3K pathways activation. Also, clinical evidence shows that increased SHCBP1 prognosticates a poor response of patients to trastuzumab therapy. Theaflavine-3, 3'-digallate (TFBG) is identified as an inhibitor of the SHCBP1-PLK1 interaction, which is a potential trastuzumab sensitizing agent and, in combination with trastuzumab, is highly efficacious in suppressing HER2-positive gastric cancer growth. These findings suggest an aberrant mitotic HER2-SHCBP1-PLK1 axis underlies trastuzumab sensitivity and offer a new strategy to combat gastric cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Trastuzumab/farmacologia , Animais , Antineoplásicos Imunológicos/farmacologia , Biflavonoides/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Mitose/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Fosfoproteínas/metabolismo , Prognóstico , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Receptor ErbB-2/antagonistas & inibidores , Proteínas Adaptadoras da Sinalização Shc/antagonistas & inibidores , Proteínas Adaptadoras da Sinalização Shc/química , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA