Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
J Am Chem Soc ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126391

RESUMO

Second-harmonic-generation (SHG) switching is an emerging phenomenon with potential applications in bistable storage and optical switches while also serving as a sensitive probe for inversion-symmetry. Temperature-induced disorder-order phase transition has been proven to be a rational design strategy for achieving SHG bi-state switching; however, pressure-sensitive SHG switching via a disorder-order structural transition mechanism is rarely reported and lacks sensitivity and cyclicity as practical switching materials. Herein, we demonstrate the pressure-induced "dynamical disorder-order" phase transition as an effective strategy for triggering SHG and SHG switching in NH4Cl. The "dynamical disorder-order" phase transition of NH4Cl occurring at as low as 1 GPa is confirmed by comprehensive in situ high-pressure XRD, molecular vibrational spectra, and Brillouin scattering spectra. The pressure-induced SHG is responsive to a wide excitation wavelength region (800-1500 nm), and the "off-on" switching is reversible for up to 50 cycles, setting a record for pressure-driven switching materials. It is worth noting that when pressure is further increased to 14 GPa, NH4Cl exhibits another SHG "on-off" switching, which makes it the first triplet SHG "off-on-off" switching material. Molecular dynamics simulations reveal the key role of N-H···Cl hydrogen bonding in the pressure-induced "dynamic disorder-order" mechanism. Finally, we verified that chemical pressure and physical pressure can jointly regulate the SHG switching behavior of NH4X (X = Cl, Br). The pressure-driven "dynamic disorder-order" transition mechanism sheds light on the rational design of multistable SHG switching materials for photoswitches and information storage.

2.
Mater Horiz ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162707

RESUMO

The rare physical property of negative thermal expansion (NTE) is intriguing because materials with a large NTE over a wide temperature range can serve as high-performance thermal expansion compensators. However, the applications of NTE are hindered by the fact that most of the available NTE materials show small magnitudes of NTE, and/or NTE occurs only in a narrow temperature range. Herein, for the first time, we investigated the effect of anion substitution instead of general Pb/Ti-site substitutions on the thermal expansion properties of a typical ferroelectric NTE material, PbTiO3. Intriguingly, the substitution of S for O in PbTiO3 further increases the tetragonality of PbTiO3. Consequently, an unusually enhanced NTE with an average volumetric coefficient of thermal expansion of V = -2.50 × 10-5 K-1 was achieved over a wide temperature range (300-790 K), which is in contrast to that of pristine PbTiO3 (V = -1.99 × 10-5 K-1, RT-763 K). The intensified NTE is attributed to the enhanced hybridization between Pb/Ti and O/S atoms by the substitution of S, as evidenced by our theoretical investigations. We therefore demonstrate a new technique for introducing mixed anions to achieve a large NTE over a wide temperature range in PbTiO3-based ferroelectrics.

3.
Nanomicro Lett ; 16(1): 247, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008133

RESUMO

Electrochemical co-reduction of nitrate (NO3-) and carbon dioxide (CO2) has been widely regarded as a promising route to produce urea under ambient conditions, however the yield rate of urea has remained limited. Here, we report an atomically ordered intermetallic pallium-zinc (PdZn) electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis. It is found that Pd and Zn are responsible for the adsorption and activation of NO3- and CO2, respectively, and thus the co-adsorption and co-activation NO3- and CO2 are achieved in ordered PdZn pairs. More importantly, the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier, as demonstrated on both operando measurements and theoretical calculations. Consequently, the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78% and a urea yield rate of 1274.42 µg mg-1 h-1, and the latter is 1.5-fold larger than disordered pairs in PdZn alloys. This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.

4.
Inorg Chem ; 63(28): 12894-12900, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38938112

RESUMO

The latent value of nonlinear optical (NLO) crystals applied in solid-state laser equipment necessitates the development of applicable strategies for constructing noncentrosymmetric (NCS) crystals. By modulating the synthetic temperature and pressure to achieve the rearrangement of [TeO3]2- groups, a new NCS tellurium tungstate, ß-K2TeW3O12 (ß-KTW), with a strong second harmonic generation (SHG) response was synthesized based on its centrosymmetric polymorphic phase α-K2TeW3O12 (α-KTW). Computational calculation reveals that the large SHG response of ß-KTW (15 × KH2PO4@1064 and 1.5 × KTiOPO4@1950 nm) could be attributed to the uniform arrangement of the NLO-active [TeO3]2- and [WO6]6- groups. ß-KTW also exhibits enlarged birefringence (0.196@1064 nm) and a high laser damage threshold (42.3 MW cm-2), showing great potential as a nonlinear crystalline material. This work also provides a new route for the construction of NLO crystals based on centric structure, i.e., reverse pressure regulation.

5.
Inorg Chem ; 63(21): 9720-9725, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38757704

RESUMO

High-performance nonlinear-optical (NLO) crystals need to simultaneously meet multiple basic and conflicting performance requirements. Here, by using a partial chemical substitution strategy, the first noncentrosymmetric (NCS) PbBeB2O5 crystal with a BeB2O8 group was synthesized, exhibiting a two-dimensional [BeB2O5]∞ layer constructed by interconnecting BeB2O8 groups and bridged PbO4 with an active lone pair. The crystal shows a promising UV NLO functional feature, including a strong SHG effect of 3.5 × KDP (KH2PO4), large birefringence realizing phase matchability in the whole transparency region from 246 to 2500 nm, a short UV absorption edge of 246 nm, and single-crystal easy growth. Remarkably, theoretical studies reveal that the BeB2O8 group has high nonlinear activity, which could stimulate the discovery of a series of excellent NLO beryllium borates.

6.
Angew Chem Int Ed Engl ; 63(28): e202403328, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662352

RESUMO

Solid-state structures with the superhalogen [BO2]- have thus far only been observed with a few compounds whose syntheses require high reaction temperatures and complicated procedures, while their optical properties remain almost completely unexplored. Herein, we report a facile, energy-efficient synthesis of the first [BO2]-based deep-ultraviolet (deep-UV) transparent oxide K9[B4O5(OH)4]3(CO3)(BO2) ⋅ 7H2O (KBCOB). Detailed structural characterization and analysis confirm that KBCOB possesses a rare four-in-one three-dimensional quasi-honeycomb framework, with three π-conjugated anions ([BO2]-, [BO3]3-, and [CO3]2-) and one non-π-conjugated anion ([BO4]5-) in the one crystal. The evolution from the traditional halogenated nonlinear optical (NLO) analogues to KBCOB by superhalogen [BO2]- substitution confers deep-UV transparency (<190 nm), a large second-harmonic generation response (1.0×KH2PO4 @ 1064 nm), and a 15-fold increase in birefringence. This study affords a new route to the facile synthesis of functional [BO2]-based oxides, paving the way for the development of next-generation high-performing deep-UV NLO materials.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38593015

RESUMO

Unknown domain shift caused by the unavailability of target domain during training phase degrades the performance of intelligent fault diagnosis models in practical applications. Domain generalization (DG)-based methods have recently emerged to alleviate the influence of domain shift and improve the generalization ability of models toward invisible working conditions. However, most existing studies are conducted on multiple fully labeled source domains. Meanwhile, domain-specific information related to the variations of working conditions is often neglected during model training. Therefore, in order to realize reliable generalization fault diagnosis based on partially labeled source domains, this article proposes a contrast-assisted domain-specificity-removal network (CDSRN) to extract transferable features from domain-specificity-removal perspective. Concretely, a domain-specific feature removal branch is designed to disentangle domain-invariant features and domain-specific features, thus excavating generalized information only in domain-invariance dimension. Simultaneously, proxy-contrastive representation enhancement module is embedded to facilitate the fault class-discriminative and domain-discriminative feature learning, thereby assisting the model in further improvement of generalization capability. Experimental studies confirm the effectiveness and competitiveness of the proposed CDSRN in semi-supervised generalization fault diagnosis.

8.
J Phys Chem Lett ; 15(13): 3611-3618, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530095

RESUMO

Further improving the activity and selectivity of photocatalytic CO2 reduction remains a challenge. Herein, we propose a new strategy for synergistically promoting photocatalytic CO2 reduction by combining two-dimensional (2D) ferroelectric polarization and single-atom catalysis. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the separation and migration of photogenerated carriers, which provides a prerequisite for enhancing the photocatalytic efficiency. In addition, the introduction of single Ag atoms can act as an electron reservoir to significantly modify the bonding configurations on the surface through proper static electron transfer, thus effectively promoting the adsorption and activation of CO2 molecules. More importantly, we found that switching the ferroelectric polarization can synergistically optimize the limiting potential as well as control the final products. This study provides a new approach for enhancing the catalytic activity and selectivity of photocatalytic CO2 reduction.

9.
J Am Chem Soc ; 146(14): 9975-9983, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466811

RESUMO

Oxides have attracted considerable attention owing to their potential for nonlinear optical (NLO) applications. Although significant progress has been achieved in optimizing the structural characteristics of primitives (corresponding to the simplest constituent groups, namely, cations/anions/neutral molecules) comprising the crystalline oxides, the role of the primitives' interaction in determining the resultant functional structure and optical properties has long been underappreciated and remains unclear. In this study, we employ a π-conjugated organic primitive confinement strategy to manipulate the interactions between primitives in antimonates and thereby significantly enhance the optical nonlinearity. Chemical bonds and relatively weak H-bonding interactions promote the formation of cis- and trans-Sb(III)-based dimer configurations in (C5H5NO)(Sb2OF4) (4-HPYSOF) and (C5H7N2)(Sb2F7) (4-APSF), respectively, resulting in very different second-harmonic generation (SHG) efficiencies and birefringences. In particular, 4-HPYSOF displays an exceptionally strong SHG response (12 × KH2PO4 at 1064 nm) and a large birefringence (0.513 at 546 nm) for a Sb(III)-based NLO oxide as well as a UV cutoff edge. Structural analyses and theoretical studies indicate that polarized ionic bond interactions facilitate the favorable arrangement of both the inorganic and organic primitives, thereby significantly enhancing the optical nonlinearity in 4-HPYSOF. Our findings shed new light on the intricate correlations between the interactions of primitives, inorganic primitive configuration, and SHG properties, and, more broadly, our approach provides a new perspective in the development of advanced NLO materials through the interatomic bond engineering of oxides.

10.
J Phys Chem Lett ; 15(10): 2867-2875, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38446846

RESUMO

The rapid recombination of photogenerated carriers heavily restricts the photocatalytic efficiency. Here, we propose a new strategy to improve catalytic efficiency based on the ferroelectric van der Waals heterostructure (CuBiP2Se6/C2N). Combining density functional theory and the nonadiabatic molecular dynamics (NAMD) method, we have systematically analyzed the ground-state properties and carrier dynamics images in the CuBiP2Se6/C2N heterostructure. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the photogenerated carriers separation. NAMD results demonstrate that the excited-state carrier transfer and recombination processes in the CuBiP2Se6/C2N are consistent with a type II mechanism. Meanwhile, constructing the ferroelectric heterostructure can effectively prolong the carrier lifetime, from ∼65.98 to ∼124.54 ps. Moreover, the high quantum efficiency and tunable band edge positions mean that the CuBiP2Se6/C2N heterostructure is an excellent potential candidate material for photocatalytic water splitting.

11.
Adv Sci (Weinh) ; 11(12): e2306670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288532

RESUMO

Large birefringence is a crucial but hard-to-achieve optical parameter that is a necessity for birefringent crystals in practical applications involving modulation of the polarization of light in modern opto-electronic areas. Herein, an oxyanion polymerization strategy that involves the combination of two different types of second-order Jahn-Teller distorted units is employed to realize giant anisotropy in a covalent molybdenum tellurite. Mo(H2O)Te2O7 (MTO) exhibits a record birefringence value for an inorganic UV-transparent oxide crystalline material of 0.528 @ 546 nm, which is also significantly larger than those of all commercial birefringent crystals. MTO has a UV absorption edge of 366 nm and displays a strong powder second-harmonic generation response of 5.4 times that of KH2PO4. The dominant roles of the condensed polytellurite oxyanions [Te8O20]8- in combination with the [MoO6]6- polyhedra in achieving the giant birefringence in MTO are clarified by structural analysis and first-principles calculations. The results suggest that polymerization of polarizability-anisotropic oxyanions may unlock the promise of birefringent crystals with exceptional birefringence.

12.
ACS Nano ; 18(4): 3251-3259, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227818

RESUMO

The phenomenon of pressure-induced emission alterations related to complex excitonic dynamics in 2D lead halide perovskites (LHPs) has gained considerable attention for understanding their structure-property relationship and obtaining inaccessible luminescence under ambient conditions. However, the well-known pressure-induced emissions are limited to the formation of self-trapped excitons (STEs) due to the structural distortion under compression, which goes against the advantage of the highly pure emission of LHPs. Here, the pressure-induced detrapping from STEs to free excitons (FEs) accompanied by the dramatic transition from broadband orangish emission to narrow blue emission has been achieved in chiral 2D LHPs and R- and S-[4MeOPEA]2PbBr4, (4MeOPEA = 4-methoxy-α-methylbenzylammonium). The combined experimental and calculated results reveal that the distortion level of PbBr6 octahedra of R- and S-[4MeOPEA]2PbBr4 exhibits an unusually significant reduction as the applied pressure increases, which leads to decreased electron-phonon coupling and self-trapped energy barrier and consequently enables the detrapping of STEs to FEs. This work illustrates the dramatic exciton transfer in 2D LHPs and highlights the potential for realizing highly efficient and pure light emissions by manipulating the structural distortion via strain engineering.

13.
Small ; 20(3): e2304010, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726234

RESUMO

Van der Waals (vdW) heterostructures are composed of atomically thin layers assembled through weak (vdW) force, which have opened a new era for integrating materials with distinct properties and specific applications. However, few studies have focused on whether and how anisotropic materials affect heterostructure system. The study introduces anisotropic and isotropic materials in a heterojunction system to change the in-plane symmetry, offering a new degree of freedom for modulating its properties. The sample is fabricated by manually stacking ReS2 and WS2 flakes prepared by mechanical exfoliation. Raman spectra and photoluminescence measurements confirm the formation of an effective heterojunction, indicating interlayer coupling of the system. The anisotropy and asymmetry of the WS2 -ReS2 heterostructure system can be adjusted by the introduction of isotropic WS2 and anisotropic ReS2 , which can be proved by the change of the polarized Raman pattern. In the transient absorption measurement, the transient absorption spectra of WS2 -ReS2 heterostructure are red-shifted compared to those of WS2 monolayer, and the charge transfer is observed in the heterostructure. These results show the potential of anisotropic 2D materials in anisotropy modulation of heterostructures, which may promote future electronic or photonic application.

14.
Angew Chem Int Ed Engl ; 63(10): e202318107, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38116843

RESUMO

Considerable effort has been invested in the development of non-centrosymmetric (NCS) inorganic solids for ferroelectricity-, piezoelectricity- and, particularly, optical nonlinearity-related applications. While great progress has been made, a persistent problem is the difficulty in constructing NCS materials, which probably stems from non-directionality and unsaturation of the ionic bonds between metal counter-cations and covalent anionic modules. We report herein a secondary-bond-driven approach that circumvents the cancellation of dipole moments between adjacent anionic modules that has plagued second-harmonic generation (SHG) material design, and which thereby affords a polar structure with strong SHG properties. The resultant first NCS counter-cation-free iodate, VO2 (H2 O)(IO3 ) (VIO), a new class of iodate, crystallizes in a polar lattice with ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] zigzag chains connected by weak hydrogen bonds and intermolecular forces. VIO exhibits very large SHG responses (18 × KH2 PO4 @ 1200 nm, 1.5 × KTiOPO4 @ 2100 nm) and sufficient birefringence (0.184 @ 546 nm). Calculations and crystal structure analysis attribute the large SHG responses to consistent polarization orientations of the ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] chains controlled by secondary bonds. This study highlights the advantages of manipulating the secondary bonds in inorganic solids to control NCS structure and optical nonlinearity, affording a new perspective in the development of high-performance NLO materials.

15.
Neural Netw ; 171: 251-262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103435

RESUMO

Traffic flow prediction plays an instrumental role in modern intelligent transportation systems. Numerous existing studies utilize inter-embedded fusion routes to extract the intrinsic patterns of traffic flow with a single temporal learning approach, which relies heavily on constructing graphs and has low training efficiency. Different from existing studies, this paper proposes a spatio-temporal ensemble network that aims to leverage the strengths of different sequential capturing approaches to obtain the intrinsic dependencies of traffic flow. Specifically, we propose a novel model named graph temporal convolutional long short-term memory network (GT-LSTM), which mainly consists of features splicing and patterns capturing. In features splicing, the spatial dependencies of traffic flow are captured by employing self-adaptive graph convolutional network (GCN), and a non-inter-embedded approach is designed to integrate the spatial and temporal states. Further, the aggregated spatio-temporal states are fed into patterns capturing, which can effectively exploit the advantages of temporal convolutional network (TCN) and bidirectional long short-term memory network (Bi-LSTM) to extract the intrinsic patterns of traffic flow. Extensive experiments conducted on four real-world datasets demonstrate that the proposed network obtains excellent performance in both forecasting accuracy and training efficiency.


Assuntos
Inteligência , Aprendizagem , Memória de Longo Prazo
16.
Dalton Trans ; 53(3): 1221-1229, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38108439

RESUMO

Exploring feasible tactics to induce the formation of non-centrosymmetric (NCS) structures, especially from centrosymmetric (CS) structures, is essential for the development of nonlinear optical crystals with more potential. An NCS alkali metal-containing molybdenum iodate hydrate, namely, NaMoO3(IO3)(H2O), was designed based on the CS matrix NaMoO3(IO3) via introducing a water molecule into the structure. The introduction of one crystalline water molecule results in the rearrangement of Λ-shaped cis-[MoO4(IO3)2] units, and the proper array of the cis-[MoO4(IO3)2] units in NaMoO3(IO3)(H2O) results in its strong SHG response of 4.6 × KH2PO4. In addition, NaMoO3(IO3)(H2O) exhibits a wider optical bandgap of 3.44 eV and a larger birefringence of 0.231 than its matrix. Furthermore, the framework of NaMoO3(IO3)(H2O) is highly similar to that of α-KMoO3(IO3), with water molecules assisting Na+ cations in occupying the position of K+. However, due to the extra hydrogen bond of water molecules, the [MoO3(IO3)]∞ layers in NaMoO3(IO3)(H2O) retain a parallel-stacking arrangement, different from the antiparallel arrangement of layers in α-KMoO3(IO3) with a centric structure. This study confirms the feasibility of applying a water molecule to adjust the orientation of basic building block units to assemble an NCS structure based on CS crystals.

17.
Angew Chem Int Ed Engl ; 63(7): e202318401, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153195

RESUMO

Zero area compressibility (ZAC) is an extremely rare mechanical response that exhibits an invariant two-dimensional size under hydrostatic pressure. All known ZAC materials are constructed from units in two dimensions as a whole. Here, we propose another strategy to obtain the ZAC by microscopically orthogonal-braiding one-dimensional zero compressibility strips. Accordingly, ZAC is identified in a copper-based compound with a planar [CuO4 ] unit, Cu2 GeO4 , that possesses an area compressibility as low as 1.58(26) TPa-1 over a wide pressure range from ≈0 GPa to 21.22 GPa. Based on our structural analysis, the subtle counterbalance between the shrinkage of [CuO4 ] and the expansion effect from the increase in the [CuO4 ]-[CuO4 ] dihedral angle attributes to the ZAC response. High-pressure Raman spectroscopy, in combination with first-principles calculations, shows that the electron transfer from in-plane bonding dx 2 -y 2 to out-of-plane nonbonding dz 2 orbitals within copper atoms causes the counterintuitive extension of the [CuO4 ]-[CuO4 ] dihedral angle under pressure. Our study provides an understanding on the pressure-induced structural evolution of copper-based oxides at an electronic level and facilitates a new avenue for the exploration of high-dimensional anomalous mechanical materials.

18.
Inorg Chem ; 62(51): 21451-21460, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38085670

RESUMO

Hybrid metal halides (HMHs) with low-dimensional structures have attracted increasing attention due to their striking optical properties. Herein, two new zero-dimensional HMHs have been fabricated by CdCl2/ZnCl2 and 4'-(4-pyridyl-phenyl)-2,2':6',2″-terpyridine (Tpy), including (TpyH3)[CdCl4][Cl] (Tpy-Cd) and (TpyH3)[ZnCl4][Cl] (Tpy-Zn). Their structures are consisted of a [TpyH3]3+ organic cation, an inorganic [ZnCl4] or [CdCl4] tetrahedron, and one isolated Cl- anion. Tpy-Cd crystallizes to a noncentrosymmetric structure and possesses a moderate second harmonic response of 0.72 × KH2PO4, while Tpy-Zn features a centrosymmetric space group. Though Tpy-Cd and Tpy-Zn crystallize into space groups of completely different symmetry due to distinct connection mode and molecular distortion, they display quite similar photoluminescence of bright green light emission under ultraviolet excitation, nearly identical in Stokes shift, photoluminescence quantum yield, decay lifetime, and energy. The photoluminescence quantum yields of green light emission were measured to be nearly 25%, outperforming most of the Cd/Zn low-dimensional HMHs.

19.
Angew Chem Int Ed Engl ; 62(52): e202315133, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37926678

RESUMO

The development of urgently-needed ultraviolet (UV)/deep-UV nonlinear optical (NLO) materials has been hindered by contradictory requirements of the microstructure, in particular the need for a strong second-harmonic generation (SHG) response as well as a short phase-matching (PM) wavelength. We herein employ a "de-covalency" band gap engineering strategy to adjust the optical linearity and nonlinearity. This has been achieved by assembling two types of transition-metal (TM) polyhedra ([TaO2 F4 ] and [TaF7 ]), affording the first tantalum-based deep-UV-transparent NLO materials, A5 Ta3 OF18 (A = K (KTOF), Rb (RTOF)). Experimental and theoretical studies reveal that the highly ionic bonds and strong electropositivity of tantalum in the two oxyfluorides induce record short PM wavelengths (238 (KTOF) and 240 (RTOF) nm) for d0 -TM-centered oxides, in addition to strong SHG responses (2.8 × KH2 PO4 (KTOF) and 2.6 × KH2 PO4 (RTOF)), and sufficient birefringences (0.092 (KTOF) and 0.085 (RTOF) at 546 nm). These results not only broaden the available strategies for achieving deep-UV NLO materials by exploiting the currently neglected d0 -TMs, but also push the shortest PM wavelength into the short-wavelength UV region.

20.
Cell Cycle ; 22(19): 2097-2112, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974357

RESUMO

Gliomas are commonly known as primary brain tumors and associated with frequent recurrence and an unsatisfactory prognosis despite extensive research in the underlying molecular mechanisms. We aimed to examine the role of ANTXR1 in glioma tumorigenesis and explore its downstream regulatory mechanism. ANTXR1 expression in clinical specimens and its relationship with some pathological characteristics were detected using immunohistochemical staining. After silencing/upregulating ANTXR1 through lentiviral transfection in glioma cell lines, qRT-PCR and western blotting were used to examine mRNA and protein levels, and cell phenotype was also detected. ANTXR1-knockdown and -overexpression cells were then processed by AKT activator and PI3K inhibitor, respectively, to verify downstream PI3K/AKT pathway regulated by ANTXR1. Xenograft nude mice models were constructed to verify the role of ANTXR1 in vivo. We found overexpression of ANTXR1 in both cell lines in comparison with those in normal brain tissues. Glioma cell growth and migratory ability were dramatically impaired as a result of silencing ANTXR1 by shANTXR1 lentiviruses. ANTXR1 blockade also accelerated cell apoptosis and held back cell cycle via targeting G2 phrase during cell mitosis. In vivo xenograft models verified in vitro findings above. Further exploration disclosed that AKT activator promoted anti-tumor effects mediated by ANTXR1 knockdown, while PI3K inhibitor limited pro-tumor effects mediated by ANTXR1 overexpression, indicating that ANTXR1 functioned in glioma cells through regulating PI3K/AKT pathway. ANTXR1 could play an indispensable role in glioma tumorigenesis via activating PI3K/AKT-mediated cell growth. Our study provides a theoretical basis for targeting ANTXR1 as a molecular target in glioma clinical therapeutics.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Camundongos Nus , Glioma/patologia , Proliferação de Células/genética , Moléculas de Adesão Celular , Carcinogênese/genética , Linhagem Celular Tumoral , Apoptose/genética , Proteínas dos Microfilamentos/metabolismo , Receptores de Superfície Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA