Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36899744

RESUMO

We aimed to investigate the effects of dietary alpha-lipoic acid (α-LA) on the growth performance, serum biochemical indexes, liver morphology, antioxidant capacity, and transcriptome of juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂). Four experimental diets supplemented with 0 (SL0), 0.4 (L1), 0.6 (L2), and 1.2 (L3) g/kg α-LA were formulated and fed to three replicates of juvenile hybrid grouper (24.06 ± 0.15 g) for 56 d. The results indicated that dietary 0.4 and 0.6 g/kg α-LA significantly decreased the weight gain rate in juvenile hybrid groupers. Compared with SL0, the content of total protein in the serum of L1, L2, and L3 increased significantly, and alanine aminotransferase decreased significantly. The content of albumin in the serum of L3 increased significantly, and triglyceride, total cholesterol, and aspartate aminotransferase decreased significantly. In addition, the hepatocyte morphology in L1, L2, and L3 all showed varying degrees of improvement, and the activities of glutathione peroxidase and superoxide dismutase in the liver of L2 and L3 were significantly increased. A total of 42 differentially expressed genes were screened in the transcriptome data. KEGG showed that a total of 12 pathways were significantly enriched, including the pathway related to immune function and glucose homeostasis. The expression of genes (ifnk, prl4a1, prl3b1, and ctsl) related to immune were significantly up-regulated, and the expressions of gapdh and eno1 genes related to glucose homeostasis were significantly down-regulated and up-regulated, respectively. In summary, dietary supplementation of 0.4 and 0.6 g/kg α-LA inhibited the growth performance of juvenile hybrid groupers. A total of 1.2 g/kg α-LA could reduce the blood lipid level, improve hepatocyte damage, and increase the hepatic antioxidant enzyme activity. Dietary α-LA significantly affected the pathway related to immune function and glucose homeostasis.

2.
J Colloid Interface Sci ; 611: 684-694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974228

RESUMO

Interfacial design and the co-catalyst effect are considered to be effective to achieve separation and transport of photogenerated carriers in composite photocatalysts. In this study, a Z-scheme heterojunction was successfully combined with a co-catalyst to achieve a highly efficient LaNiO3/g-C3N4/MoS2 photocatalyst. MoS2 flakes were loaded on a hybrid material surface, which was formed by LaNiO3 nanocubes embedded on layered g-C3N4, and a good heterostructure with multiple attachment sites was obtained. Experimental studies confirmed that the Z-scheme heterojunction completely preserves the strong redox ability of the photogenerated electrons and holes. As a cocatalyst, MoS2 further promoted interfacial charge separation and transport. The synergistic effect of the Z-scheme heterojunction and co-catalyst effectively realized the transfer of photogenerated carriers from "slow transfer" to "high transfer" and promoted water decomposition and pollutant degradation. Results revealed that under simulated sunlight irradiation, LaNiO3/g-C3N4/MoS2 composites exhibit superior hydrogen evolution of 45.1 µmol h-1, which is 19.1 times that of g-C3N4 and 4.9 times that of LaNiO3/g-C3N4, respectively. Moreover, the LaNiO3/g-C3N4/MoS2 Z-scheme photocatalyst exhibited excellent photocatalytic performance for antibiotic degradation and heavy-metal ion reduction under visible light. This study might provide some insights into the development of photocatalysts for solar energy conversion and environmental remediation.


Assuntos
Grafite , Molibdênio , Dissulfetos , Lantânio , Compostos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA