Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38836332

RESUMO

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Assuntos
Nanotubos de Carbono , Triterpenos Pentacíclicos , Pneumonia , Transdução de Sinais , Triterpenos , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanotubos de Carbono/toxicidade , NF-kappa B/metabolismo , Triterpenos Pentacíclicos/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/prevenção & controle , Pneumonia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia
2.
Open Med (Wars) ; 19(1): 20240898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463518

RESUMO

Photothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer. This study aims to explore the potential role of Piezo1 activation in the hyperthermia therapy of breast cancer cells and investigate the underlying mechanisms. Results showed that the specific agonist of Piezo1 ion channel (Yoda1) aggravated the cell death of breast cancer cells triggered by heat stress in vitro. Reactive oxygen species (ROS) production was significantly increased following heat stress, and Yoda1 exacerbated the rise in ROS release. GSK2795039, an inhibitor of NADPH oxidase 2 (NOX2), reversed the Yoda1-mediated aggravation of cellular injury and ROS generation after heat stress. The in vivo experiments demonstrate the well photothermal conversion efficiency of TiCN under the 1,064 nm laser irradiation, and Yoda1 increases the sensitivity of breast tumors to PTT in the presence of TiCN. Our study reveals that Piezo1 activation might serve as a photothermal sensitizer for PTT, which may develop as a promising therapeutic strategy for breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA