Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1281233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033557

RESUMO

Alzheimer's disease is a common neurological disorder, which has become one of the major factors affecting human health due to its serious impact on individuals, families and society. It has been confirmed that gut microbiota can affect the occurrence and development of Alzheimer's disease. Especially, fecal microbiota transplantation plays a positive role in the treatment of Alzheimer's disease. The mechanisms for improving Alzheimer's disease might include anti-inflammation and regulation of amyloid ß-protein, synaptic plasticity, short-chain fatty acids, and histone acetylation. In this mini-review, the relationship between fecal microbiota transplantation and Alzheimer's disease was summarized. It is hoped that fecal microbiota transplantation would play a positive role in the prevention and treatment of Alzheimer's disease in the future.

3.
Inflammation ; 46(5): 1917-1931, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37289398

RESUMO

New consensus indicates type 2 diabetes mellitus (T2DM) and periodontitis as comorbidity and may share common pathways of disease progression. Sulfonylureas have been reported to improve the periodontal status in periodontitis patients. Glipizide, a sulfonylurea widely used in the treatment of T2DM, has also been reported to inhibit inflammation and angiogenesis. The effect of glipizide on the pathogenicity of periodontitis, however, has not been studied. We developed ligature-induced periodontitis in mice and treated them with different concentrations of glipizide and then analyzed the level of periodontal tissue inflammation, alveolar bone resorption, and osteoclast differentiation. Inflammatory cell infiltration and angiogenesis were analyzed using immunohistochemistry, RT-qPCR, and ELISA. Transwell assay and Western bolt analyzed macrophage migration and polarization. 16S rRNA sequencing analyzed the effect of glipizide on the oral microbial flora. mRNA sequencing of bone marrow-derived macrophages (BMMs) stimulated by P. gingivalis lipopolysaccharide (Pg-LPS) after treatment with glipizide was analyzed. Glipizide decreases alveolar bone resorption, periodontal tissue degradation, and the number of osteoclasts in periodontal tissue affected by periodontitis (PAPT). Glipizide-treated periodontitis mice showed reduced micro-vessel density and leukocyte/macrophage infiltration in PAPT. Glipizide significantly inhibited osteoclast differentiation in vitro experiments. Glipizide treatment did not affect the oral microbiome of periodontitis mice. mRNA sequencing and KEGG analysis showed that glipizide activated PI3K/AKT signaling in LPS-stimulated BMMs. Glipizide inhibited the LPS-induced migration of BMMs but promoted M2/M1 macrophage ratio in LPS-induced BMMs via activation of PI3K/AKT signaling. In conclusion, glipizide inhibits angiogenesis, macrophage inflammatory phenotype, and osteoclastogenesis to alleviate periodontitis pathogenicity suggesting its' possible application in the treatment of periodontitis and diabetes comorbidity.


Assuntos
Perda do Osso Alveolar , Diabetes Mellitus Tipo 2 , Periodontite , Humanos , Camundongos , Animais , Osteogênese , Glipizida/metabolismo , Glipizida/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Ribossômico 16S/metabolismo , Virulência , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Osteoclastos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/metabolismo , RNA Mensageiro/metabolismo
4.
J Adv Res ; 50: 55-68, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36243399

RESUMO

INTRODUCTION: Serum amyloid P component (SAP) regulates the innate immune system and microbial diseases. Periodontitis is an inflammatory oral disease developed by the host immune system's interaction with the dysbiotic oral microbiome, thereby SAP could play a role in periodontitis pathogenicity. OBJECTIVES: To investigate the role of SAP in oral microbiome modulation and peridontitis pathogenicity. METHODS: In this study, wildtype and SAP-knockout (KO) mice were used. Ligature-based periodontitis was developed in mice. Oral microbiome diversity was analyzed by 16 s rRNA sequencing. Macrophages and Porphyromonas gingivalis (P. gingivalis) co-culture system analyzed the effect of SAP in macrophage phagocytosis of P. gingivalis. RESULTS: The level of SAP was upregulated in the periodontitis-affected periodontium of humans and mice but not in the liver and blood circulation. Periodontal macrophages were the key source of upregulated SAP in periodontitis. SAP-KO aggravated periodontal inflammation, periodontitis, and a higher number of M1-type inflammatory macrophage infiltration in the periodontium. The oral microbiome of SAP-KO periodontitis mice was altered with a higher abundance of Porphyromonas at the genus level. SAP-KO macrophages showed compromised phagocytosis of P. gingivalis in the co-culture system. Co-culture of SAP-KO macrophages and P. gingivalis induced the C5a expression and exogenous SAP treatment nullified this effect. Exogenous recombinant SAP treatment did not affect P. gingivalis growth and opsonization. PMX205, an antagonist of C5a, treatment robustly enhanced P. gingivalis phagocytosis by SAP-KO macrophages, indicating the involvement of the C5a-C5aR signaling in the compromised P. gingivalis phagocytosis by SAP-KO macrophages. CONCLUSION: SAP deficiency aggravates periodontitis possibly via C5a-C5aR signaling-mediated defective macrophage phagocytosis of P. gingivalis. A higher abundance of P. gingivalis during SAP deficiency could promote M1 macrophage polarization and periodontitis. This finding suggests the possible protecting role of elevated levels of periodontal SAP against periodontitis progression.


Assuntos
Periodontite , Porphyromonas gingivalis , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Camundongos Knockout , Periodontite/metabolismo , Fagocitose , Porphyromonas gingivalis/fisiologia , Transdução de Sinais , Componente Amiloide P Sérico/metabolismo
5.
Front Vet Sci ; 9: 938629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172610

RESUMO

Background: Currently, many studies have been published on the relationship between the gut microbiome and knee osteoarthritis. However, the evidence for the association of gut microbiota with knee osteoarthritis has not been comprehensively evaluated. Objective: This review aimed to assess existing results and provide scientific evidence for the association of low-grade inflammation caused by gut microbiota disturbances with knee osteoarthritis. Methods: This study conducted an extensive review of the current literature using four databases, PubMed, EMBASE, Cochrane Library and Web of Science before 31 December 2021. Risk of bias was determined using ROBINS and SYRCLE, and quality of evidence was assessed using GRADE and CAMADARES criteria. Twelve articles were included. Results: Studies have shown that a high-fat diet leads to a disturbance of the gut microbiota, mainly manifested by an increase in the abundance of Firmicutes and Proteobacteria, a decrease in Bacteroidetes, and an increase in the Firmicutes/ Bacteroidetes ratio. Exercise can reverse the pattern of gain or loss caused by high fat. These changes are associated with elevated levels of serum lipopolysaccharide (LPS) and its binding proteins, as well as various inflammatory factors, leading to osteoarthritis (OA). Conclusion: This systematic review shows that a correlation between low-grade inflammation caused by gut microbiota disturbances and severity of knee osteoarthritis radiology and dysfunction. However, there was a very small number of studies that could be included in the review. Thus, further studies with large sample sizes are warranted to elucidate the association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis, and to explore the possible mechanisms for ameliorating osteoarthritis by modulating gut microbiota.

6.
G3 (Bethesda) ; 6(12): 4217-4226, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27760793

RESUMO

Sleep is an essential behavioral state of rest that is regulated by homeostatic drives to ensure a balance of sleep and activity, as well as independent arousal mechanisms in the central brain. Dopamine has been identified as a critical regulator of both sleep behavior and arousal. Here, we present results of a genetic screen that selectively restored the Dopamine Receptor (DopR/DopR1/dumb) to specific neuroanatomical regions of the adult Drosophila brain to assess requirements for DopR in sleep behavior. We have identified subsets of the mushroom body that utilizes DopR in daytime sleep regulation. These data are supported by multiple examples of spatially restricted genetic rescue data in discrete circuits of the mushroom body, as well as immunohistochemistry that corroborates the localization of DopR protein within mushroom body circuits. Independent loss of function data using an inducible RNAi construct in the same specific circuits also supports a requirement for DopR in daytime sleep. Additional circuit activation of discrete DopR+ mushroom body neurons also suggests roles for these subpopulations in sleep behavior. These conclusions support a new separable function for DopR in daytime sleep regulation within the mushroom body. This daytime regulation is independent of the known role of DopR in nighttime sleep, which is regulated within the Fan-Shaped Body (FSB). This study provides new neuroanatomical loci for exploration of dopaminergic sleep functions in Drosophila, and expands our understanding of sleep regulation during the day vs. night.


Assuntos
Drosophila/fisiologia , Receptores Dopaminérgicos/genética , Sono/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Encéfalo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Técnicas de Inativação de Genes , Testes Genéticos , Genótipo , Masculino , Corpos Pedunculados/metabolismo , Mutação
7.
Hum Mol Genet ; 24(20): 5805-27, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26220976

RESUMO

Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40 -: 75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5 -: 15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of ß-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Neurogênese , Prosencéfalo/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Neurônios Dopaminérgicos/fisiologia , Proteína Duplacortina , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Norepinefrina/metabolismo , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/patologia , Prosencéfalo/fisiopatologia , Neurônios Serotoninérgicos/fisiologia , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA