Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Bioengineering (Basel) ; 10(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37627766

RESUMO

Escherichia coli has been engineered for L-malate production via aerobic cultivation. However, the maximum yield obtained through this mode is inferior to that of anaerobic fermentation due to massive amounts of CO2 emissions. Here, we aim to address this issue by reducing CO2 emissions of recombinant E. coli during aerobic L-malate production. Our findings indicated that NADH oxidation and ATP-synthesis-related genes were down-regulated with 2 g/L of YE during aerobic cultivations of E. coli E23, as compared to 5 g/L of YE. Then, E23 was engineered via the knockout of nuoA and the introduction of the nonoxidative glycolysis (NOG) pathway, resulting in a reduction of NAD+ and ATP supplies. The results demonstrate that E23 (ΔnuoA, NOG) exhibited decreased CO2 emissions, and it produced 21.3 g/L of L-malate from glucose aerobically with the improved yield of 0.43 g/g. This study suggests that a restricted NAD+ and ATP supply can prompt E. coli to engage in incomplete oxidization of glucose, leading to the accumulation of metabolites instead of utilizing them in cellular respiration.

3.
Front Pharmacol ; 14: 1163638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101547

RESUMO

Background: Chronic fatigue syndrome (CFS) is characterized by significant and persistent fatigue. Ginseng is a traditional anti-fatigue Chinese medicine with a long history in Asia, as demonstrated by clinical and experimental studies. Ginsenoside Rg1 is mainly derived from ginseng, and its anti-fatigue metabolic mechanism has not been thoroughly explored. Methods: We performed non-targeted metabolomics of rat serum using LC-MS and multivariate data analysis to identify potential biomarkers and metabolic pathways. In addition, we implemented network pharmacological analysis to reveal the potential target of ginsenoside Rg1 in CFS rats. The expression levels of target proteins were measured by PCR and Western blotting. Results: Metabolomics analysis confirmed metabolic disorders in the serum of CFS rats. Ginsenoside Rg1 can regulate metabolic pathways to reverse metabolic biases in CFS rats. We found a total of 34 biomarkers, including key markers Taurine and Mannose 6-phosphate. AKT1, VEGFA and EGFR were identified as anti-fatigue targets of ginsenoside Rg1 using network pharmacological analysis. Finally, biological analysis showed that ginsenoside Rg1 was able to down-regulate the expression of EGFR. Conclusion: Our results suggest ginsenoside Rg1 has an anti-fatigue effect, impacting the metabolism of Taurine and Mannose 6-phosphate through EGFR regulation. This demonstrates ginsenoside Rg1 is a promising alternative treatment for patients presenting with chronic fatigue syndrome.

4.
Chin Med ; 17(1): 60, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610650

RESUMO

BACKGROUND: Many studies about depression have focused on the dysfunctional synaptic signaling in the hippocampus that drives the pathophysiology of depression. Radix Bupleuri has been used in China for over 2000 years to regulate liver-qi. Extracted from Radix Bupleuri, Saikosaponin D (SSD) is a pharmacologically active substance that has antidepressant effects. However, its underlying mechanism remains unknown. MATERIALS AND METHODS: A chronic unpredictable mild stress (CUMS) paradigm was used as a rat model of depression. SD rats were randomly assigned to a normal control (NC) group or one exposed to a CUMS paradigm. Of the latter group, rats were assigned to four subgroups: no treatment (CUMS), fluoxetine-treated (FLU), high-dose and low-dose SSD-treated (SSDH and SSDL). SSD was orally administrated of 1.50 mg/kg and 0.75 mg/kg/days for three weeks in the SSDH and SSDL groups, respectively. Fluoxetine was administrated at a dose of 2.0 mg/kg/days. SSD's antidepressant effects were assessed using the open field test, forced swim test, and sucrose preference test. Glutamate levels were quantified by ELISA. Western blot and immunochemical analyses were conducted to quantify proteins in the Homer protein homolog 1 (Homer1)-metabotropic glutamate receptor 5 (mGluR5) and mammalian target of rapamycin (mTOR) pathways in the hippocampal CA1 region. To measure related gene expression, RT-qPCR was employed. RESULTS: CUMS-exposed rats treated with SSD exhibited increases in food intake, body weight, and improvements in the time spent in the central are and total distance traveled in the OFT, and less pronounced pleasure-deprivation behaviors. SSD also decreased glutamate levels in CA1. In CA1 region of CUMS-exposed rats, SSD treatment increased mGluR5 expression while decreasing Homer1 expression. SSD also increased expressions of postsynaptic density protein 95 (PSD95) and synapsin I (SYP), and the ratios of p-mTOR/mTOR, p-p70S6k/p70S6k, and p-4E-BP1/4E-BP1 in the CA1 region in CUMS-exposed rats. CONCLUSIONS: SSD treatment reduces glutamate levels in the CA1 region and promotes the expression of the synaptic proteins PSD-95 and SYP via the regulation of the Homer1-mGluR5 and downstream mTOR signaling pathways. These findings suggest that SSD could act as a natural neuroprotective agent in the prevention of depression.

6.
Front Pharmacol ; 12: 773562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867405

RESUMO

Background: Depression is a stress-related disorder that seriously threatens people's physical and mental health. Xiaoyaosan is a classical traditional Chinese medicine formula, which has been used to treat mental depression since ancient times. More and more notice has been given to the relationship between the occurrence of necroptosis and the pathogenesis of mental disorders. Objective: The purpose of present study is to explore the potential mechanism of Xiaoyaosan for the treatment of depression using network pharmacology and experimental research, and identify the potential targets of necroptosis underlying the antidepressant mechanism of Xiaoyaosan. Methods: The mice model of depression was induced by chronic unpredictable mild stress (CUMS) for 6 weeks. Adult C57BL/6 mice were randomly divided into five groups, including control group, chronic unpredictable mild stress group, Xiaoyaosan treatment group, necrostatin-1 (Nec-1) group and solvent group. Drug intervention performed from 4th to 6th week of modeling. The mice in Xiaoyaosan treatment group received Xiaoyaosan by intragastric administration (0.254 g/kg/d), and mice in CUMS group received 0.5 ml physiological saline. Meanwhile, the mice in Nec-1 group were injected intraperitoneally (i.p.) with Nec-1 (10 mg/kg/d), and the equivalent volume of DMSO/PBS (8.3%) was injected into solvent group mice. The behavior tests such as sucrose preference test, forced swimming test and novelty-suppressed feeding test were measured to evaluate depressive-like behaviors of model mice. Then, the active ingredients in Xiaoyaosan and the related targets of depression and necroptosis were compiled through appropriate databases, while the "botanical drugs-active ingredients-target genes" network was constructed by network pharmacology analysis. The expressions of RIPK1, RIPK3, MLKL, p-MLKL were detected as critical target genes of necroptosis and the potential therapeutic target compounds of Xiaoyaosan. Furthermore, the levels of neuroinflammation and microglial activation of hippocampus were measured by detecting the expressions of IL-1ß, Lipocalin-2 and IBA1, and the hematoxylin and eosin (H&E) stained was used to observe the morphology in hippocampus sections. Results: After 6-weeks of modeling, the behavioral data showed that mice in CUMS group and solvent group had obvious depressive-like behaviors, and the medication of Xiaoyaosan or Nec-1 could improve these behavioral changes. A total of 96 active ingredients in Xiaoyaosan which could regulate the 23 key target genes were selected from databases. Xiaoyaosan could alleviate the core target genes in necroptosis and improve the hippocampal function and neuroinflammation in depressed mice. Conclusion: The activation of necroptosis existed in the hippocampus of CUMS-induced mice, which was closely related to the pathogenesis of depression. The antidepressant mechanism of Xiaoyaosan included the regulation of multiple targets in necroptosis. It also suggested that necroptosis could be a new potential target for the treatment of depression.

7.
Neuropsychiatr Dis Treat ; 17: 1001-1019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854318

RESUMO

BACKGROUND: At present, the pathogenesis of depression is not fully understood, and nearly half of depression patients experience no obvious effects during treatment. This study aimed to establish a depression mouse model to explore the possible role of ferroptosis in the pathogenesis of depression, and observe the effects of Xiaoyaosan on PEBP1-GPX4-mediated ferroptosis in the hippocampus. METHODS: Forty-eight male C57BL/6 mice were randomly divided into a control group, CUMS group, Xiaoyaosan group and fluoxetine group, and the model was established by chronic unpredictable mild stress (CUMS) for a successive 6 weeks. The medication procedure was performed from the 4th to the 6th week of modeling. The behavioral evaluations were measured to evaluate depressive-like behaviors. The expressions of GPX4, FTH1, ACSL4 and COX2 were detected as ferroptosis-related indicators. Then, the total iron and ferrous content in the hippocampus were measured. The levels of PEBP1 and ERK1/2 were observed, and the expressions of GFAP and IBA1 were also detected to measure the functions of astrocytes and microglia in the hippocampus. RESULTS: Eight herbs of Xiaoyaosan had 133 active ingredients which could regulate the 43 ferroptosis-related genes in depression. After 6 weeks of modeling, the data showed that mice in the CUMS group had obvious depressive-like behaviors, and medication with Xiaoyaosan or fluoxetine could significantly improve the behavioral changes. The expressions of GPX4, FTH1, ACSL4, COX2, PEBP1, ERK1/2, GFAP and IBA1 changed in the CUMS group mice, while the total iron and ferrous content also changed. Xiaoyaosan and fluoxetine had obvious curative effects that could significantly alleviate the above changes in the hippocampus. CONCLUSION: Our results revealed that the activation of ferroptosis might exist in the hippocampi of CUMS-induced mice. The PEBP1-GPX4-mediated ferroptosis could be involved in the antidepressant mechanism of Xiaoyaosan. It also implied that ferroptosis could become a new target for research into the depression mechanism and antidepressant drugs.

8.
Front Pharmacol ; 12: 586788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912031

RESUMO

Purpose: It is revealed that Xiaoyaosan could reduce glutamate level in the hippocampus of depressed rats, whose metabolism leads to the pathophysiology of depression. However, the underlying mechanism remains unclear. This study aims to explore the effect of Xiaoyaosan on glutamate metabolism, and how to regulate the excitatory injury caused by glutamate. Methods: Rats were induced by chronic unpredictable mild stress, then divided into control, vehicle (distilled water), Xiaoyaosan, fluoxetine, vehicle (DMSO), Xiaoyaosan + Ly294002 and Ly294002 groups. Ly294002 was microinjected into the lateral ventricular catheterization at 5 mM. Xiaoyaosan (2.224 g/kg) and fluoxetine (2.0 mg/kg) were orally administered for three weeks. The open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were used to assess depressive behavior. The glutamate and corticosterone (CORT) levels were detected by ELISA. Western blot, immunochemistry or immunofluorescence were used to detect the expressions of NR2B, MAP2, PI3K and P-AKT/Akt in the hippocampal CA1 region. The mRNA level of MAP2, NR2B and PI3K were detected by RT-qPCR. Results: Compared to the rats in control group, body weight and food intake of CUMS rats was decreased. CUMS rats also showed depression-like behavior as well as down regulate the NR2B and PI3K/Akt signaling pathway. Xiaoyaosan treatments could increase food intake and body weight as well as improved time spent in the central area, total distance traveled in the OFT. Xiaoyaosan could also decrease the immobility time as well as increase the sucrose preference in SPT. Moreover, xiaoyaosan decreased the level of glutamate in the hippocampal CA1 region and serum CORT in CUMS rats. Furthermore, xiaoyaosan improved the expression of MAP2 as well as increased the expression of NR2B, PI3K and the P-AKT/AKT ratio in the hippocampal CA1 region in the CUMS rats. Conclusion: Xiaoyaosan treatment can exert the antidepressant effect by rescuing hippocampal neurons loss induced by the glutamate-mediated excitotoxicity in CUMS rats. The underlying pathway maybe through NR2B and PI3K/Akt signaling pathways. These results may suggest the potential of Xiaoyaosan in preventing the development of depression.

9.
Aging (Albany NY) ; 12(19): 19563-19584, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052137

RESUMO

Free Wanderer Powder (FWP) is a classic formula for depression with digestive dysfunctions, i.e., liver-depression and spleen-deficiency syndrome (LDSDS) in Chinese Medicine. But its protective mechanism has not been fully clarified. Here a chronic restraint stress (CRS) induced rat model showed depression with LDSDS in food intake, metabolism, and behaviour tests. Then 75 rats were randomly divided, and received CRS and different treatment with behaviour tests. Expressions of c-Fos and AMPA-type glutamate receptor subunits GluR1-3 in hippocampus CA1, CA3, DG and amygdala BLA were detected by immunohistochemistry, western blot and RT-PCR, respectively. In CRS rats, FWP alleviated depressive behaviour and c-Fos expression. FWP suppressed the increasement of GluR1 in CA1 and DG, p-GluR1 in CA1, and p-GluR2 and GluR3 in BLA. FWP also blocked the decrease of GluR1 and Glur2/3 in CA3, p-GluR1 in CA3, and p-GluR2 in CA1 and CA3. Furthermore, constituents of FWP and their potential targets were explored using UHPLC-MS and systematic bioinformatics analysis. There were 23 constituents identified in FWP, 9 of which regulated glutamatergic synapse. Together, these results suggest that FWP contains effective constituents and alleviates depression with LDSDS by regulating AMPA-type glutamate receptor homeostasis in amygdala and hippocampus.

10.
Microb Cell Fact ; 19(1): 165, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811486

RESUMO

BACKGROUND: L-malate is one of the most important platform chemicals widely used in food, metal cleaning, textile finishing, pharmaceuticals, and synthesis of various fine chemicals. Recently, the development of biotechnological routes to produce L-malate from renewable resources has attracted significant attention. RESULTS: A potential L-malate producing strain E. coli BA040 was obtained by inactivating the genes of fumB, frdABCD, ldhA and pflB. After co-overexpression of mdh and pck, BA063 achieved 18 g/L glucose consumption, leading to an increase in L-malate titer and yield of 13.14 g/L and 0.73 g/g, respectively. Meantime, NADH/NAD+ ratio decreased to 0.72 with the total NAD(H) of 38.85 µmol/g DCW, and ATP concentration reached 715.79 nmol/g DCW. During fermentation in 5L fermentor with BA063, 41.50 g/L glucose was consumed within 67 h with the final L-malate concentration and yield of 28.50 g/L, 0.69 g/g when heterologous CO2 source was supplied. CONCLUSIONS: The availability of NAD(H) was correlated positively with the glucose utilization rate and cellular metabolism capacities, and lower NADH/NAD+ ratio was beneficial for the accumulation of L-malate under anaerobic conditions. Enhanced ATP level could significantly enlarge the intracellular NAD(H) pool under anaerobic condition. Moreover, there might be an inflection point, that is, the increase of NAD(H) pool before the inflection point is followed by the improvement of metabolic performance, while the increase of NAD(H) pool after the inflection point has no significant impacts and NADH/NAD+ ratio would dominate the metabolic flux. This study is a typical case of anaerobic organic acid fermentation, and demonstrated that ATP level, NAD(H) pool and NADH/NAD+ ratio are three important regulatory parameters during the anaerobic production of L-malate.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Malatos/metabolismo , NAD/metabolismo , Trifosfato de Adenosina/metabolismo , Anaerobiose , DNA Bacteriano , Fermentação , Deleção de Genes , Engenharia Genética , Microbiologia Industrial , Engenharia Metabólica , Redes e Vias Metabólicas/genética
11.
Complement Med Res ; 27(1): 47-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31394544

RESUMO

BACKGROUND: Xiaoyaosan (XYS) has achieved definite curative effects in clinic. However, the mechanism is not clear. Previous studies of our team indicated XYS improved anxiety-like behaviors through inhibiting c-Jun N-terminal kinase (JNK) signaling pathway of hippocampus. OBJECTIVES: In the study, we explored whether the JNK signaling pathway is involved in the mechanism of XYS treating depression. METHOD: Forty-eight rats were divided randomly into 4 groups (n = 12): the control group (deionized water, p.o.), the model group (deionized water, p.o.), the fluoxetine group (2.08 mg/kg/day, p.o.), and the XYS group (3.9 g/kg/day, p.o.). All rats except for the control group were given continuous 21 days of chronic immobilization stress (CIS; 3 h/day). On day 29, the body weights and the behavioral tests, including the novelty suppressed feeding test, the open field test, and the elevated plus maze test, were measured. On day 30, all the rats were sacrificed, and three indices of the JNK signaling pathway were tested by Western blot. RESULTS: The body weight and behavioral tests of all groups indicated that 21 days of CIS induced depression-like behaviors. After 21 days of treatment with fluoxetine and XYS, changes were seen in body weight, behaviors, and JNK, phosphorylated JNK (P-JNK), and phosphorylated c-Jun (P-c-Jun) levels in the hippocampus. CONCLUSIONS: XYS ameliorated the depression-like behaviors, potentially through affecting the JNK signaling pathway in the hippocampus.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Sistema de Sinalização das MAP Quinases , Animais , Masculino , Ratos , Ratos Sprague-Dawley
12.
Neuropsychiatr Dis Treat ; 15: 21-31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30587994

RESUMO

BACKGROUND: Tryptophan metabolism has always been considered to play a vital role in mental disorder diseases, and how traditional Chinese formula Xiaoyaosan regulates the tryptophan metabolism is a complement to the pathogenesis of depression. This study established a depression rat model by the chronic immobilization stress (CIS) method and observed the change in tryptophan metabolism in hippocampus and the effects of Xiaoyaosan. METHODS: Forty-eight male Sprague Dawley (SD) rats were randomly divided into the following four groups: control group, CIS group, Xiaoyaosan group, and fluoxetine group. The depression model was established by the 21-day CIS. The food intake and body weight were recorded, and the sucrose preference test (SPT), novelty suppressed feeding (NSF) test and open field test (OFT) were also used to evaluate the model. Then, the contents of tryptophan and 5-hydroxytryptamine (5-HT) in hippocampus were detected by the ELISA method, and the expression levels of tryptophan hydrogenase 2 (TPH2) and indoleamine 2,3-dioxygenase 1 (IDO1) in hippocampus were determined by quantitative reverse transcriptase polymerase chain reaction reaction (qRT-PCR) and Western blot methods. RESULTS: The behavioral data showed a significant difference between the model group and the normal group. The 5-HT content in the hippocampi of CIS rats was significantly reduced, whereas the tryptophan content in the hippocampi of model rats was significantly increased. The TPH2 level in hippocampus of the model group was significantly decreased, and the IDO1 level was significantly increased. Xiaoyaosan and fluoxetine could significantly reverse these changes and had obvious curative effects. CONCLUSION: The abnormal tryptophan metabolism existed in the hippocampi of chronic stress-depressed rats, which was closely related to the pathogenesis of depression. Xiaoyaosan could improve the tryptophan metabolism by regulating the expression levels of TPH2 and IDO1, thus exerting an antidepressant-like effect.

13.
Front Psychiatry ; 10: 910, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920757

RESUMO

Background: Chronic stress is an important risk factor for depression. The nesfatin-1 (NES1)-oxytocin (OT)-proopiomelanocortin (POMC) neural pathway, which is involved in the stress response, was recently shown to have an anorectic effect in the hypothalamus. Our previous study showed that Xiaoyaosan, a well-known antidepressant used in traditional Chinese medicine, effectively relieved appetite loss induced by chronic immobilization stress (CIS). However, whether Xiaoyaosan ameliorates depression-like behaviors and anorexia by regulating the NES1-OT-POMC neural pathway remains unclear. Objective: To investigate whether the antidepressant-like and anti-anorexia effects of Xiaoyaosan are related to the NES1-OT-POMC neural pathway in the hypothalamus. Methods: Rats were randomly divided into control, CIS, Xiaoyaosan treatment, and fluoxetine treatment groups. The rats in the CIS, Xiaoyaosan treatment, and fluoxetine treatment groups were subjected to CIS for 21 consecutive days, during which they were administered distilled water, a Xiaoyaosan decoction [3.854 g/(kg·d)] or fluoxetine [1.76 mg/(kg·d)], respectively, by gavage, and their body weights and food intake were monitored daily. The rats were subsequently subjected to the open field test and sucrose preference test. Then, the expression levels of corticosterone and NES1 in the serum and the expression levels of NES1, OT, POMC, and melanocortin-4 receptor (MC4R) in the hypothalamus were determined by real-time fluorescence quantitative polymerase chain reaction, Western blot analysis, and immunochemistry. Furthermore, immunofluorescence double staining was used to determine whether related proteins in the hypothalamic NES1-OT-POMC neural pathway were co-expressed. Results: Compared to control rats, rats exposed to CIS exhibited gradually less food intake and lower body weights and significantly increased concentrations of NES1 in the serum and paraventricular nucleus. Moreover, the expression levels of POMC, OT, and MC4R in the hypothalamus were significantly higher in the CIS group than those in the control group. However, these changes were reversed by pretreatment with Xiaoyaosan and fluoxetine. Specifically, the expression levels of members of the NES1-OT-POMC neural pathway were lower in the Xiaoyaosan-treated group than in the CIS group. Conclusion: Xiaoyaosan ameliorates CIS-induced depression-like behaviors and anorexia by regulating the NES1-OT-POMC neural pathway in the hypothalamus.

14.
Appl Microbiol Biotechnol ; 102(23): 9893-9910, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30259101

RESUMO

Due to environmental issues and the depletion of fossil-based resources, ecofriendly sustainable biomass-based chemical production has been given more attention recently. Succinic acid (SA) is one of the top value added bio-based chemicals. It can be synthesized through microbial fermentation using various waste steam bioresources. Production of chemicals from waste streams has dual function as it alleviates environmental concerns; they could have caused because of their improper disposal and transform them into valuable products. To date, Actinobacillus succinogenes is termed as the best natural SA producer. However, few reviews regarding SA production by A. succinogenes were reported. Herewith, pathways and metabolic engineering strategies, biomass pretreatment and utilization, and process optimization related with SA fermentation by A. succinogenes were discussed in detail. In general, this review covered vital information including merits, achievements, progresses, challenges, and future perspectives in SA production using A. succinogenes. Therefore, it is believed that this review will provide platform to understand the potential of the strain and tackle existing hurdles so as to develop superior strain for industrial applications. It will also be used as a baseline for identification, isolation, and improvement of other SA-producing microbes.


Assuntos
Actinobacillus/metabolismo , Ácido Succínico/metabolismo , Fermentação , Microbiologia Industrial , Engenharia Metabólica
15.
Bioprocess Biosyst Eng ; 41(10): 1461-1470, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29946744

RESUMO

Coffee husk (CH), a waste obtained from processing of coffee cherries via dry method, causes serious environmental problems. In this study, strategies were designed to utilize CH for succinic acid (SA) production. Three different CH hydrolysis methods: thermal, thermochemical and crude enzymes obtained by solid state fermentation of Aspergillus niger and Trichoderma reesei, were evaluated to generate fermentable feedstock for SA production using Actinobacillus succinogenes. The feasibility of these pretreatment methods was investigated. Accordingly, thermochemical hydrolysis using H2SO4 at 121 °C for 30 min, appeared the most effective method for CH hydrolysis, producing 24.4 g/L of reducing sugars (RS). Finally, 19.3 g/L of SA with yield and productivity of 0.95 g SA/g RS and 0.54 g/L/h, respectively, were obtained using CH hydrolysate. The current study revealed an alternative way of utilization coffee waste for value addition while mitigating environmental problems caused by its disposal.


Assuntos
Actinobacillus/crescimento & desenvolvimento , Aspergillus niger/crescimento & desenvolvimento , Café/química , Ácido Succínico/metabolismo , Ácidos Sulfúricos/química , Trichoderma/crescimento & desenvolvimento , Hidrólise
16.
Molecules ; 23(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751542

RESUMO

Background: The apelin-APJ system has been considered to play a crucial role in HPA axis function, and how the traditional Chinese compound prescription Xiaoyaosan regulates the apelin-APJ system as a supplement to treat depressive disorders. Objective: To investigate the depression-like behaviors and expression of apelin and APJ in hypothalamus of chronic unpredictable mild stress (CUMS) mice and study whether these changes related to the regulation of Xiaoyaosan. Methods: 60 adult C57BL/6J mice were randomly divided into four groups, including control group, CUMS group, Xiaoyaosan treatment group and fluoxetine treatment group. Mice in the control group and CUMS group received 0.5 mL physiological saline once a day by intragastric administration. Mice in two treatment groups received Xiaoyaosan (0.25 g/kg/d) and fluoxetine (2.6 mg/kg/d), respectively. After 21 days of modeling with CUMS, the expression of apelin and APJ in hypothalamus were measured by real-time fluorescence quantitative PCR, western blot and immunohistochemical staining. The physical condition, body weight, food intake and behavior tests such as open field test, sucrose preference test and force swimming test were measured to evaluate depressive-like behaviors. Results: In this study, significant behavioral changes were found in CUMS-induced mice, meanwhile the expressions of apelin and APJ in the hypothalamus were changed after modeling. The body weight, food-intake and depressive-like behaviors in CUMS-induced mice could be improved by Xiaoyaosan treatment which is similar with the efficacy of fluoxetine, while the expressions of apelin and APJ in hypothalamus were modified by Xiaoyaosan. Conclusions: The data suggest that apelin-APJ system changes in the hypothalamus may be a target of depressive disorders, and the beneficial effects of Chinese compound prescription Xiaoyaosan on depressive-like behaviors may be mediated by the apelin-APJ system.


Assuntos
Antidepressivos/farmacologia , Receptores de Apelina/metabolismo , Apelina/metabolismo , Depressão/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/psicologia , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Camundongos
17.
Sci Rep ; 7(1): 353, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28336920

RESUMO

Although the anxiolytic-like effects of Xiaoyaosan, a Chinese herbal formula, have been described in many previous studies, its underlying mechanism remains undefined. The cytokine tumour necrosis factor-α (TNF-α) and its closely associated janus kinase 2 (JAK2)-signal transducer and activator of transcription (STAT3) signalling pathway regulate the neuro-inflammatory response in the brain, thus participating in the development of anxiety. Our purpose was to investigate whether the anxiolytic-like effects of Xiaoyaosan are related to the TNF-α/JAK2-STAT3 pathway in the hippocampus. We examined the effects of Xiaoyaosan on behaviours exhibited in the elevated plus maze test, open field test and novelty-suppressed feeding test as well as hippocampal neuron damage and changes in the TNF-α/JAK2-STAT3 pathway in a rat model of chronic immobilization stress (CIS)-induced anxiety. Xiaoyaosan exerts anxiolytic-like effects on CIS-induced anxiety, with a significant alleviation of anxiety-like behaviours, an attenuation of hippocampal neuron damage, and a reversal of the activation of the TNF-α/JAK2-STAT3 pathway in the hippocampus that are similar to the effects of the JAK2 antagonist AG490. However, Xiaoyaosan and AG490 failed to effectively regulate apoptosis-related factors, including Bax and Caspase-3. These results suggest that Xiaoyaosan attenuates stress-induced anxiety behaviours by down-regulating the TNF-α/JAK2-STAT3 pathway in the rat hippocampus.


Assuntos
Ansiolíticos/administração & dosagem , Ansiedade/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Ansiedade/prevenção & controle , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Regulação para Baixo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/sangue
18.
Biol Pharm Bull ; 40(2): 187-194, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28154259

RESUMO

The current study evaluated the effects of Xiao Yao San (XYS) on anxiety-like behaviors and sought to determine whether the c-Jun N-terminal kinase (JNK) signaling pathway is involved. A total of 40 rats were divided into 5 groups (n=8): the control group (deionized water, per os (p.o.)), the model group (deionized water, p.o.), the SP600125 group (surgery), the per se group (surgery), and the XYS group (3.9 g/kg/d, p.o.). A 1% dimethyl sulfoxide (DMSO) citrate buffer solution (2 µL/ventricle/d) and SP600125 (10 µg/ventricle, 2 µL/ventricle/d) were separately and bilaterally injected into the rats of the two surgery groups via the ventricular system of the brain. All but the control group underwent 14 d of chronic immobilization stress (CIS; 3 h/d). On day 15, the body weights of all of the rats were measured; additionally, the rats were subjected to the elevated plus maze (EPM) and novelty suppressed feeding (NSF) tests. Finally, JNK signaling pathway indices, including phosphorylated JNK (P-JNK), JNK, phosphorylated c-Jun (P-c-Jun) and cytochrome C (Cyt-C), were examined. After modeling, the body weight and behavioral analyses of the model rats indicated that this modeling method induced anxiety-like behaviors. P-JNK, JNK, and P-c-Jun were altered in the hippocampus of the model rats. After 14 d of treatment with XYS and SP600125, rat body weight and behaviors as well as P-JNK, JNK, and P-c-Jun had changed. However, no significant difference in Cyt-C was found. XYS improves the anxiety-like behaviors induced by CIS, which might be related to the JNK signaling pathway in the hippocampus.


Assuntos
Ansiedade/enzimologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Psicológico/enzimologia , Animais , Ansiedade/tratamento farmacológico , Doença Crônica , Medicamentos de Ervas Chinesas/farmacologia , Imobilização/efeitos adversos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/tratamento farmacológico
19.
Neural Plast ; 2017: 1230713, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29445549

RESUMO

Objectives: To explore the relationship between insulin levels and nonpsychotic dementia. Methods: Six electronic databases (PubMed, Cochrane, SCI, CNKI, VIP, and Wanfang) were searched from January 1, 2007, to March 1, 2017. Experimental or observational studies that enrolled people with nonpsychotic dementia or abnormal insulin levels in which insulin levels or MMSE scores (events in nonpsychotic dementia) were the outcome measures. Random-effects models were chosen for this meta-analysis. Sample size, mean, s.d., and events were primarily used to generate effect sizes (with the PRIMA registration number CRD42017069860). Results: 50 articles met the final inclusion criteria. Insulin levels in cerebrospinal fluid were lower (Hedges' g = 1.196, 95% CI = 0.238 to 2.514, and P = 0.014), while the levels in peripheral blood were higher in nonpsychotic dementia patients (Hedges' g = 0.853 and 95% CI = 0.579 to 1.127), and MMSE scores were significantly lower in the high insulin group than in the healthy control group (Hedges' g = 0.334, 95% CI = 0.249 to 0.419, and P = 0.000). Conclusions: Our comprehensive results indicate that blood insulin levels may increase in patients with nonpsychotic dementia.


Assuntos
Demência/sangue , Demência/líquido cefalorraquidiano , Insulina/sangue , Insulina/líquido cefalorraquidiano , Bases de Dados Factuais , Demência/epidemiologia , Humanos , Estudos Observacionais como Assunto
20.
Artigo em Inglês | MEDLINE | ID: mdl-27042185

RESUMO

Background. Compared with antidepressant activity of Xiaoyaosan, the role of Xiaoyaosan in anxiety has been poorly studied. Objective. To observe the effects of Xiaoyaosan on anxiety-like behavior induced by chronic immobilization stress (CIS) and further explore whether these effects were related to CRF1R signaling. Methods. Adult male SD rats were randomly assigned to five groups (n = 12): the nonstressed control group, vehicle-treated (saline, p.o.) group, Xiaoyaosan-treated (3.854 g/kg, p.o.) group, vehicle-treated (surgery) group, and antalarmin-treated (surgery) group. Artificial cerebrospinal fluid (0.5 µL/side) or CRF1R antagonist antalarmin (125 ng/0.5 µL, 0.5 µL/side) was bilaterally administered into the basolateral amygdala in the surgery groups. Except for the nonstressed control group, the other four groups were exposed to CIS (14 days, 3 h/day) 30 minutes after treatment. On days 15 and 16, all animals were subjected to the elevated plus-maze (EPM) and novelty suppressed feeding (NSF) test. We then examined the expression of CRF1R, pCREB, and BDNF in the amygdala. Results. Chronic pretreatment with Xiaoyaosan or antalarmin significantly reversed elevated anxiety-like behavior and the upregulated level of CRF1R and BDNF in the amygdala of stressed rats. pCREB did not differ significantly among the groups. Conclusions. These results suggest that Xiaoyaosan exerts anxiolytic-like effects in behavioral tests and the effects may be related to CRF1R signaling in the amygdala.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA