Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 921
Filtrar
1.
J Med Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722184

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a promising therapeutic target in inflammation-related diseases. However, the inhibition of IRAK4 kinase activity may lead to moderate anti-inflammatory efficacy owing to the dual role of IRAK4 as an active kinase and a scaffolding protein. Herein, we report the design, synthesis, and biological evaluation of an efficient and selective IRAK4 proteolysis-targeting chimeric molecule that eliminates IRAK4 scaffolding functions. The most potent compound, LC-MI-3, effectively degraded cellular IRAK4, with a half-maximal degradation concentration of 47.3 nM. LC-MI-3 effectively inhibited the activation of downstream nuclear factor-κB signaling and exerted more potent pharmacological effects than traditional kinase inhibitors. Furthermore, LC-MI-3 exerted significant therapeutic effects in lipopolysaccharide- and Escherichia coli-induced acute and chronic inflammatory skin models compared with kinase inhibitors in vivo. Therefore, LC-MI-3 is a candidate IRAK4 degrader in alternative targeting strategies and advanced drug development.

2.
Phytomedicine ; 129: 155635, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701541

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS: To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS: Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION: This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.

3.
Cancer Rep (Hoboken) ; 7(5): e2003, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703000

RESUMO

BACKGROUND: Mid-rectal cancer treatment traditionally involves conventional laparoscopic-assisted resection (CLAR). This study aimed to assess the clinical and therapeutic advantages of Natural Orifice Specimen Extraction Surgery (NOSES) over CLAR. AIMS: To compare the clinical outcomes, intraoperative metrics, postoperative recovery, complications, and long-term prognosis between NOSES and CLAR groups. MATERIALS & METHODS: A total of 136 patients were analyzed, with 92 undergoing CLAR and 44 undergoing NOSES. Clinical outcomes were evaluated, and propensity score matching (PSM) was employed to control potential biases. RESULTS: The NOSES group exhibited significant improvements in postoperative recovery, including lower pain scores on days 1, 3, and 5 (p < .001), reduced need for additional analgesics (p = .02), shorter hospital stays (10.8 ± 2.3 vs. 14.2 ± 5.3 days; p < .001), and decreased intraoperative blood loss (48.1 ± 52.7 mL vs. 71.0 ± 55.0 mL; p = .03). Patients undergoing NOSES also reported enhanced satisfaction with postoperative abdominal appearance and better quality of life. Additionally, the NOSES approach resulted in fewer postoperative complications. CONCLUSION: While long-term outcomes (overall survival, disease-free survival, and local recurrence rates) were comparable between the two methods, NOSES demonstrated superior postoperative outcomes compared to CLAR in mid-rectal cancer treatment, while maintaining similar long-term oncological safety. These findings suggest that NOSES could serve as an effective alternative to CLAR without compromising long-term results.


Assuntos
Laparoscopia , Cirurgia Endoscópica por Orifício Natural , Neoplasias Retais , Humanos , Feminino , Laparoscopia/métodos , Laparoscopia/efeitos adversos , Masculino , Neoplasias Retais/cirurgia , Neoplasias Retais/patologia , Neoplasias Retais/mortalidade , Pessoa de Meia-Idade , Idoso , Cirurgia Endoscópica por Orifício Natural/métodos , Cirurgia Endoscópica por Orifício Natural/efeitos adversos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Tempo de Internação/estatística & dados numéricos , Resultado do Tratamento , Qualidade de Vida , Pontuação de Propensão
4.
Angew Chem Int Ed Engl ; : e202404213, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600431

RESUMO

Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhance the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron radiationanalytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron radiation analytical techniques is proposed.

5.
Comput Biol Chem ; 110: 108082, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38663187

RESUMO

PURPOSE: Clear cell renal cell carcinoma (ccRCC) frequently progresses to advanced stages due to tumor thrombus (TTs) formation. In this study, we aimed to investigate the role of coagulation-related pathway activation in the progression of ccRCC. METHODS: Consensus clustering was used to identify coagulation-related molecular clusters of ccRCC patients from The Cancer Genome Atlas Program (TCGA) database. The function of coagulation and its correlation with the immune microenvironment were investigated. Protein-protein interactions and differential expression analysis were used to identify the key gene, which was verified by external experiments. The coagulation-associated risk score was constructed by cox proportional hazards regression. RESULTS: Notable disparities were detected in immune characteristics, prognostic differentiation and drug sensitivity between two coagulation-related clusters. Through the integration of clinical stage significance and protein-protein interactions, the key gene MMP9 was screened and it was significantly correlated with CD4+T cells, CD8+T cells and Treg cells. A coagulation-related risk score prognostic model was developed in the Cancer Genome Atlas (TCGA) cohort for risk stratification and prognosis prediction. The prognostic predictive values of the coagulation-related risk score were further authenticated in both TCGA-KIRC and E-MTAB-1980 cohorts. CONCLUSION: There is an obvious correlation between the coagulation and the tumor microenvironment in ccRCC. As a key coagulation-related gene, MMP9 may promote the progression of renal cell carcinoma by influencing immune infiltration of CD8+T cells and Treg cells. Additionally, the risk score could be used as a durable prognostic biomarker, which could assist in clinical decision making for ccRCC patients.

6.
Heliyon ; 10(8): e27422, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644883

RESUMO

Background: Recent genetic evidence supports that circulating biochemical and metabolic traits (BMTs) play a causal role in Alzheimer's disease (AD), which might be mediated by changes in brain structure. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between blood BMTs, brain image-derived phenotypes (IDPs) and AD. Methods: Utilizing the genetic variants associated with 760 blood BMTs and 172 brain IDPs as the exposure and the latest AD summary statistics as the outcome, we analyzed the causal relationship between blood BMTs and brain IDPs and AD by using a two-sample Mendelian randomization (MR) method. Additionally, we used two-step/mediation MR to study the mediating effect of brain IDPs between blood BMTs and AD. Results: Twenty-five traits for genetic evidence supporting a causal association with AD were identified, including 12 blood BMTs and 13 brain IDPs. For BMTs, glutamine consistently reduced the risk of AD in 3 datasets. For IDPs, specific alterations of cortical thickness (atrophy in frontal pole and insular lobe, and incrassation in superior parietal lobe) and subcortical volume (atrophy in hippocampus and its subgroups, left accumbens and left choroid plexus, and expansion in cerebral white matter) are vulnerable to AD. In the two-step/mediation MR analysis, superior parietal lobe, right hippocampal fissure and left accumbens were identified to play a potential mediating role among three blood BMTs and AD. Conclusions: The results obtained in our study suggest that 12 circulating BMTs and 13 brain IDPs play a causal role in AD. Importantly, a subset of BMTs exhibit shared genetic architecture and potentially causal relationships with brain structure, which may contribute to the alteration of brain IDPs in AD.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38644354

RESUMO

BACKGROUND: There are no effective pharmacological treatments for sarcopenia. We aim to identify potential therapeutic targets for sarcopenia by integrating various publicly available datasets. METHODS: We integrated druggable genome data, cis-eQTL/cis-pQTL from human blood and skeletal muscle tissue, and GWAS summary data of sarcopenia-related traits to analyse the potential causal relationships between drug target genes and sarcopenia using the Mendelian Randomization (MR) method. Sensitivity analyses and Bayesian colocalization were employed to validate the causal relationships. We also assessed the side effects or additional indications of the identified drug targets using a phenome-wide MR (Phe-MR) approach and investigated actionable drugs for target genes using available databases. RESULTS: MR analysis identified 17 druggable genes with potential causation to sarcopenia in human blood or skeletal muscle tissue. Six of them (HP, HLA-DRA, MAP 3K3, MFGE8, COL15A1, and AURKA) were further confirmed by Bayesian colocalization (PPH4 > 90%). The up-regulation of HP [higher ALM (beta: 0.012, 95% CI: 0.007-0.018, P = 1.2*10-5) and higher grip strength (OR: 0.96, 95% CI: 0.94-0.98, P = 4.2*10-5)], MAP 3K3 [higher ALM (beta: 0.24, 95% CI: 0.21-0.26, P = 1.8*10-94), higher grip strength (OR: 0.82, 95% CI: 0.75-0.90, P = 2.1*10-5), and faster walking pace (beta: 0.03, 95% CI: 0.02-0.05, P = 8.5*10-6)], and MFGE8 [higher ALM (muscle eQTL, beta: 0.09, 95% CI: 0.06-0.11, P = 6.1*10-13; blood pQTL, beta: 0.05, 95% CI: 0.03-0.07, P = 3.8*10-09)], as well as the down-regulation of HLA-DRA [lower ALM (beta: -0.09, 95% CI: -0.11 to -0.08, P = 5.4*10-36) and lower grip strength (OR: 1.13, 95% CI: 1.07-1.20, P = 1.8*10-5)] and COL15A1 [higher ALM (muscle eQTL, beta: -0.07, 95% CI: -0.10 to -0.04, P = 3.4*10-07; blood pQTL, beta: -0.05, 95% CI: -0.06 to -0.03, P = 1.6*10-07)], decreased the risk of sarcopenia. AURKA in blood (beta: -0.16, 95% CI: -0.22 to -0.09, P = 2.1*10-06) and skeletal muscle (beta: 0.03, 95% CI: 0.02 to 0.05, P = 5.3*10-05) tissues showed an inverse relationship with sarcopenia risk. The Phe-MR indicated that the six potential therapeutic targets for sarcopenia had no significant adverse effects. Drug repurposing analysis supported zinc supplementation and collagenase clostridium histolyticum might be potential therapeutics for sarcopenia by activating HP and inhibiting COL15A1, respectively. CONCLUSIONS: Our research indicated MAP 3K3, MFGE8, COL15A1, HP, and HLA-DRA may serve as promising targets for sarcopenia, while the effectiveness of zinc supplementation and collagenase clostridium histolyticum for sarcopenia requires further validation.

9.
BMC Genomics ; 25(1): 412, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671394

RESUMO

BACKGROUND: Solanum aculeatissimum and Solanum torvum belong to the Solanum species, and they are essential plants known for their high resistance to diseases and adverse conditions. They are frequently used as rootstocks for grafting and are often crossbred with other Solanum species to leverage their resistance traits. However, the phylogenetic relationship between S. aculeatissimum and S. torvum within the Solanum genus remains unclear. Therefore, this paper aims to sequence the complete chloroplast genomes of S. aculeatissimum and S. torvum and analyze them in comparison with 29 other previously published chloroplast genomes of Solanum species. RESULTS: We observed that the chloroplast genomes of S. aculeatissimum and S. torvum possess typical tetrameric structures, consisting of one Large Single Copy (LSC) region, two reverse-symmetric Inverted Repeats (IRs), and one Small Single Copy (SSC) region. The total length of these chloroplast genomes ranged from 154,942 to 156,004 bp, with minimal variation. The highest GC content was found in the IR region, while the lowest was in the SSC region. Regarding gene content, the total number of chloroplast genes and CDS genes remained relatively consistent, ranging from 128 to 134 and 83 to 91, respectively. Nevertheless, there was notable variability in the number of tRNA genes and rRNAs. Relative synonymous codon usage (RSCU) analysis revealed that both S. aculeatissimum and S. torvum preferred codons that utilized A and U bases. Analysis of the IR boundary regions indicated that contraction and expansion primarily occurred at the junction between SSC and IR regions. Nucleotide polymorphism analysis and structural variation analysis demonstrated that chloroplast variation in Solanum species mainly occurred in the LSC and SSC regions. Repeat sequence analysis revealed that A/T was the most frequent base pair in simple repeat sequences (SSR), while Palindromic and Forward repeats were more common in long sequence repeats (LSR), with Reverse and Complement repeats being less frequent. Phylogenetic analysis indicated that S. aculeatissimum and S. torvum belonged to the same meristem and were more closely related to Cultivated Eggplant. CONCLUSION: These findings enhance our comprehension of chloroplast genomes within the Solanum genus, offering valuable insights for plant classification, evolutionary studies, and potential molecular markers for species identification.


Assuntos
Composição de Bases , Genoma de Cloroplastos , Filogenia , Solanum , Solanum/genética , Solanum/classificação , Uso do Códon , Análise de Sequência de DNA
11.
World J Clin Cases ; 12(7): 1251-1259, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38524506

RESUMO

BACKGROUND: Testicular torsion is the most common acute scrotum worldwide and mainly occurs in children and adolescents. Studies have demonstrated that the duration of symptoms and torsion grade lead to different outcomes in children diagnosed with testicular torsion. AIM: To predict the possibility of testicular salvage (TS) in patients with testicular torsion in a tertiary center. METHODS: We reviewed the charts of 75 pediatric patients with acute testicular torsion during a 12-year period from November 2011 to July 2023 at the Suzhou Hospital of Anhui Medical University. Univariate and multivariate logistic regression analyses were used to determine independent predictors of testicular torsion. The data included clinical findings, physical examinations, laboratory data, color Doppler ultrasound findings, operating results, age, presenting institution status, and follow-up results. RESULTS: Our study included 75 patients. TS was possible in 57.3% of all patients; testicular torsion occurred mostly in winter, and teenagers aged 11-15 years old accounted for 60%. Univariate logistic regression analyses revealed that younger age (P = 0.09), body mass index (P = 0.004), torsion angle (P = 0.013), red blood cell count (P = 0.03), neutrophil-to-lymphocyte ratio (P = 0.009), and initial presenting institution (P < 0.001) were associated with orchiectomy. In multivariate analysis, only the initial presenting institution predicted TS (P < 0.05). CONCLUSION: The initial presenting institution has a predictive value for predicting TS in patients with testicular torsion. Children with scrotal pain should be admitted to a tertiary hospital as soon as possible.

12.
Cancer Med ; 13(5): e6971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491804

RESUMO

BACKGROUND: More accurate prediction of distant metastases (DM) in patients with colorectal cancer (CRC) would optimize individualized treatment and follow-up strategies. Multiple prediction models based on machine learning have been developed to assess the likelihood of developing DM. METHODS: Clinicopathological features of patients with CRC were obtained from the National Cancer Center (NCC, China) and the Surveillance, Epidemiology, and End Results (SEER) database. The algorithms used to create the prediction models included random forest (RF), logistic regression, extreme gradient boosting, deep neural networks, and the K-Nearest Neighbor machine. The prediction models' performances were evaluated using receiver operating characteristic (ROC) curves. RESULTS: In total, 200,958 patients, 3241 from NCC and 197,717 CRC from SEER were identified, of whom 21,736 (10.8%) developed DM. The machine-learning-based prediction models for DM were constructed with 12 features remaining after iterative filtering. The RF model performed the best, with areas under the ROC curve of 0.843, 0.793, and 0.806, respectively, on the training, test, and external validation sets. For the risk stratification analysis, the patients were separated into high-, middle-, and low-risk groups according to their risk scores. Patients in the high-risk group had the highest incidence of DM and the worst prognosis. Surgery, chemotherapy, and radiotherapy could significantly improve the prognosis of the high-risk and middle-risk groups, whereas the low-risk group only benefited from surgery and chemotherapy. CONCLUSION: The RF-based model accurately predicted the likelihood of DM and identified patients with CRC in the high-risk group, providing guidance for personalized clinical decision-making.


Assuntos
Tomada de Decisão Clínica , Neoplasias Colorretais , Humanos , Estudos de Coortes , Fatores de Risco , Aprendizado de Máquina , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/terapia
13.
BMC Med ; 22(1): 96, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443977

RESUMO

BACKGROUND: There is a lack of effective therapeutic strategies for amyotrophic lateral sclerosis (ALS); therefore, drug repurposing might provide a rapid approach to meet the urgent need for treatment. METHODS: To identify therapeutic targets associated with ALS, we conducted Mendelian randomization (MR) analysis and colocalization analysis using cis-eQTL of druggable gene and ALS GWAS data collections to determine annotated druggable gene targets that exhibited significant associations with ALS. By subsequent repurposing drug discovery coupled with inclusion criteria selection, we identified several drug candidates corresponding to their druggable gene targets that have been genetically validated. The pharmacological assays were then conducted to further assess the efficacy of genetics-supported repurposed drugs for potential ALS therapy in various cellular models. RESULTS: Through MR analysis, we identified potential ALS druggable genes in the blood, including TBK1 [OR 1.30, 95%CI (1.19, 1.42)], TNFSF12 [OR 1.36, 95%CI (1.19, 1.56)], GPX3 [OR 1.28, 95%CI (1.15, 1.43)], TNFSF13 [OR 0.45, 95%CI (0.32, 0.64)], and CD68 [OR 0.38, 95%CI (0.24, 0.58)]. Additionally, we identified potential ALS druggable genes in the brain, including RESP18 [OR 1.11, 95%CI (1.07, 1.16)], GPX3 [OR 0.57, 95%CI (0.48, 0.68)], GDF9 [OR 0.77, 95%CI (0.67, 0.88)], and PTPRN [OR 0.17, 95%CI (0.08, 0.34)]. Among them, TBK1, TNFSF12, RESP18, and GPX3 were confirmed in further colocalization analysis. We identified five drugs with repurposing opportunities targeting TBK1, TNFSF12, and GPX3, namely fostamatinib (R788), amlexanox (AMX), BIIB-023, RG-7212, and glutathione as potential repurposing drugs. R788 and AMX were prioritized due to their genetic supports, safety profiles, and cost-effectiveness evaluation. Further pharmacological analysis revealed that R788 and AMX mitigated neuroinflammation in ALS cell models characterized by overly active cGAS/STING signaling that was induced by MSA-2 or ALS-related toxic proteins (TDP-43 and SOD1), through the inhibition of TBK1 phosphorylation. CONCLUSIONS: Our MR analyses provided genetic evidence supporting TBK1, TNFSF12, RESP18, and GPX3 as druggable genes for ALS treatment. Among the drug candidates targeting the above genes with repurposing opportunities, FDA-approved drug-R788 and AMX served as effective TBK1 inhibitors. The subsequent pharmacological studies validated the potential of R788 and AMX for treating specific ALS subtypes through the inhibition of TBK1 phosphorylation.


Assuntos
Aminopiridinas , Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Reposicionamento de Medicamentos , Análise da Randomização Mendeliana , Proteínas Serina-Treonina Quinases/genética
14.
Proc Natl Acad Sci U S A ; 121(13): e2315407121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502699

RESUMO

Organic electrodes mainly consisting of C, O, H, and N are promising candidates for advanced batteries. However, the sluggish ionic and electronic conductivity limit the full play of their high theoretical capacities. Here, we integrate the idea of metal-support interaction in single-atom catalysts with π-d hybridization into the design of organic electrode materials for the applications of lithium (LIBs) and potassium-ion batteries (PIBs). Several types of transition metal single atoms (e.g., Co, Ni, Fe) with π-d hybridization are incorporated into the semiconducting covalent organic framework (COF) composite. Single atoms favorably modify the energy band structure and improve the electronic conductivity of COF. More importantly, the electronic interaction between single atoms and COF adjusts the binding affinity and modifies ion traffic between Li/K ions and the active organic units of COFs as evidenced by extensive in situ and ex situ characterizations and theoretical calculations. The corresponding LIB achieves a high reversible capacity of 1,023.0 mA h g-1 after 100 cycles at 100 mA g-1 and 501.1 mA h g-1 after 500 cycles at 1,000 mA g-1. The corresponding PIB delivers a high reversible capacity of 449.0 mA h g-1 at 100 mA g-1 after 150 cycles and stably cycled over 500 cycles at 1,000 mA g-1. This work provides a promising route to engineering organic electrodes.

15.
Plant Commun ; : 100856, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431772

RESUMO

Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.

16.
Nat Commun ; 15(1): 2159, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461315

RESUMO

CO2 hydrogenation to chemicals and fuels is a significant approach for achieving carbon neutrality. It is essential to rationally design the chemical structure and catalytic active sites towards the development of efficient catalysts. Here we show a Ce-CuZn catalyst with enriched Cu/Zn-OV-Ce active sites fabricated through the atomic-level substitution of Cu and Zn into Ce-MOF precursor. The Ce-CuZn catalyst exhibits a high methanol selectivity of 71.1% and a space-time yield of methanol up to 400.3 g·kgcat-1·h-1 with excellent stability for 170 h at 260 °C, comparable to that of the state-of-the-art CuZnAl catalysts. Controlled experiments and DFT calculations confirm that the incorporation of Cu and Zn into CeO2 with abundant oxygen vacancies can facilitate H2 dissociation energetically and thus improve CO2 hydrogenation over the Ce-CuZn catalyst via formate intermediates. This work offers an atomic-level design strategy for constructing efficient multi-metal catalysts for methanol synthesis through precise control of active sites.

18.
Mol Neurobiol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453793

RESUMO

Novel CHCHD2 mutations causing C-terminal truncation and interrupted CHCHD2 protein stability in Parkinson's disease (PD) patients were previously found. However, there is limited understanding of the underlying mechanism and impact of subsequent CHCHD2 loss-of-function on PD pathogenesis. The current study further identified the crucial motif (aa125-133) responsible for diminished CHCHD2 expression and the molecular interplay within the C1QBP/CHCHD2/CHCHD10 complex to regulate mitochondrial functions. Specifically, CHCHD2 deficiency led to decreased neural cell viability and mitochondrial structural and functional impairments, paralleling the upregulation of autophagy under cellular stresses. Meanwhile, as a binding partner of CHCHD2, C1QBP was found to regulate the stability of CHCHD2 and CHCHD10 proteins to maintain the integrity of the C1QBP/CHCHD2/CHCHD10 complex. Moreover, C1QBP-silenced neural cells displayed severe cell death phenotype along with mitochondrial damage that initiated a significant mitophagy process. Taken together, the evidence obtained from our in vitro and in vivo studies emphasized the critical role of CHCHD2 in regulating mitochondria functions via coordination among CHCHD2, CHCHD10, and C1QBP, suggesting the potential mechanism by which CHCHD2 function loss takes part in the progression of neurodegenerative diseases.

19.
Int J Biol Macromol ; 264(Pt 1): 130481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431017

RESUMO

For applications in food industries, a fungal α-amylase from Malbranchea cinnamomea was engineered by directed evolution. Through two rounds of screening, a mutant α-amylase (mMcAmyA) was obtained with higher optimal temperature (70 °C, 5 °C increase) and better hydrolysis properties (18.6 % maltotriose yield, 2.5-fold increase) compared to the wild-type α-amylase (McAmyA). Site-directed mutations revealed that Threonine (Thr) 226 Serine (Ser) substitution was the main reason for the property evolution of mMcAmyA. Through high cell density fermentation, the highest expression level of Thr226Ser was 3951 U/mL. Thr226Ser was further used for bread baking with a dosage of 1000 U/kg flour, resulting in a 17.8 % increase in specific volume and a 35.6 % decrease in hardness compared to the control. The results were a significant improvement on those of McAmyA. Moreover, the mutant showed better anti-staling properties compared to McAmyA, as indicated by the improved sensory evaluation after 4 days of storage at 4 and 25 °C. These findings provide insights into the structure-function relationship of fungal α-amylase and introduce a potential candidate for bread-making industry.


Assuntos
Pão , alfa-Amilases , alfa-Amilases/genética , alfa-Amilases/metabolismo , Hidrólise , Trissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA