Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38667544

RESUMO

This study investigates the viscoelastic deformation mechanisms of bone as a response to Vickers hardness indentation. We utilized advanced high-resolution scanning electron microscopy (SEM) to investigate a distinct deformation pattern that originates from the indentation site within the bone matrix. The focus of our research was to analyze a unique deformation mechanism observed in bone tissue, which has been colloquially termed as "screw-like" due to its resemblance to a screw thread when viewed under an optical microscope. The primary goals of this research are to investigate the distinctive characteristics of the "screw-like" deformation pattern and to determine how the microstructure of bone influences the initiation and control of this mechanism. These patterns, emerging during the dwell period of indentation, underscore the viscoelastic nature of bone, indicating its propensity for energy dissipation and microstructural reconfiguration under load. This study uncovered a direct correlation between the length of the "screw-like" deformation and the duration of the indentation dwell time, providing quantifiable evidence of the bone's viscoelastic behavior. This finding is pivotal in understanding the mechanical properties of bone, including its fracture toughness, as it relates to the complex interplay of factors such as energy dissipation, microstructural reinforcement, and stress distribution. Furthermore, this study discusses the implications of viscoelastic properties on the bone's ability to resist mechanical challenges, underscoring the significance of viscoelasticity in bone research.

2.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296392

RESUMO

Enzymes are difficult to recycle, which limits their large-scale industrial applications. In this work, an ionic liquid-modified magnetic metal-organic framework composite, IL-Fe3O4@UiO-66-NH2, was prepared and used as a support for enzyme immobilization. The properties of the support were characterized with X-ray powder diffraction (XRD), Fourier-transform infrared (FTIR) spectra, transmission electron microscopy (TEM), scanning electronic microscopy (SEM), and so on. The catalytic performance of the immobilized enzyme was also investigated in the hydrolysis reaction of glyceryl triacetate. Compared with soluble porcine pancreatic lipase (PPL), immobilized lipase (PPL-IL-Fe3O4@UiO-66-NH2) had greater catalytic activity under reaction conditions. It also showed better thermal stability and anti-denaturant properties. The specific activity of PPL-IL-Fe3O4@UiO-66-NH2 was 2.3 times higher than that of soluble PPL. After 10 repeated catalytic cycles, the residual activity of PPL-IL-Fe3O4@UiO-66-NH2 reached 74.4%, which was higher than that of PPL-Fe3O4@UiO-66-NH2 (62.3%). In addition, kinetic parameter tests revealed that PPL-IL-Fe3O4@UiO-66-NH2 had a stronger affinity to the substrate and, thus, exhibited higher catalytic efficiency. The results demonstrated that Fe3O4@UiO-66-NH2 modified by ionic liquids has great potential for immobilized enzymes.


Assuntos
Líquidos Iônicos , Estruturas Metalorgânicas , Suínos , Animais , Lipase/química , Líquidos Iônicos/química , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Pâncreas/metabolismo , Fenômenos Magnéticos , Estabilidade Enzimática
3.
3 Biotech ; 10(12): 526, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33214974

RESUMO

This study was aimed to investigate the facilitation of anthraquinone extract on growth performance, immunity, and antioxidant capacity of the oriental river prawn (Macrobrachium nipponense), and whether it could ameliorate the hyperthermia stress. A 12-week rearing experiment was conducted with 0, 125, 250, 500, and 1000 mg kg-1 anthraquinone extract from Rheum officinale Bail-supplemented diets (AE0, AE125, AE250, AE500, and AE1000), and followed a 48-h thermal stress with 32℃ incubation. Results indicate AE250 and AE500 significantly improved the growth performance and feed utilization, the optimum level was estimated to be 251.22 mg kg-1 based on the regression analysis of special growth ratio (SGR). Meanwhile, AE250 and AE500 improved antioxidant enzyme activity and immune-related protein concentration of iNOS-NO signaling. Under thermal stress, AE250 and AE500 improved the heat tolerance, and Toll-Relish signaling was active to the resistance. These results indicate anthraquinone extract could be used as an effective immunostimulant to improve growth performance, physiological balance and protect organism form environmental hyperthermia stress. This may provide insights for immunostimulant development in aquaculture production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA