Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133508, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228009

RESUMO

Although phenanthroline diamide ligands have been widely reported, their limited solubility in organic solvents and poor performance in the separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) at high acidity are still clear demerits. In this study, we designed and synthesized three highly soluble phenanthroline diamide ligands with different side chains. By introducing alkyl chains and ester groups, the ligands solubility in 3-nitrotrifluorotoluene is increased to over 600 mmol/L, significantly higher than the previous reported phenanthroline diamide ligands. Based on anomalous aryl strengthening, benzene ring was incorporated to enhance ligand selectivity toward Am(III). Extraction experiments demonstrated favorable selectivity of all the three ligands towards Am(III). The optimal separation factor (SFAm/Eu) reaches 53 at 4 mol/L HNO3, representing one of the most effective separation of An(III) over Ln(III) under high acidity. Slope analysis, single crystal structure analysis, as well as titration of ultraviolet visible spectroscopy, mass spectrometry, and nuclear magnetic resonanc confirmed the formation of 1:1 and 1:2 complex species between the metal ions and the ligands depending on the molar ratio of metal ions in the reaction mixture. The findings of this study offer valuable insights for developing phenanthroline diamide ligands for An(III)/Ln(III) separation.

2.
ACS Omega ; 8(9): 8894-8909, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910938

RESUMO

As an aprotic O-donor ligand, 4,4'-bipyridine N,N'-dioxide (DPO) shows good potential for the preparation of uranyl coordination compounds. In this work, by regulating reactant compositions and synthesis conditions, diverse coordination assembly between uranyl and DPO under different reaction conditions was achieved in the presence of other coexisting O-donors. A total of ten uranyl-DPO compounds, U-DPO-1 to U-DPO-10, have been synthesized by evaporation or hydro/solvothermal treatment, and the possible competition and cooperation of DPO with other O-donors for the formation of these uranyl-DPO compounds are discussed. Starting with an aqueous solution of uranyl nitrate, it is found that an anionic nitrate or hydroxyl group is involved in the coordination sphere of uranyl in U-DPO-1 ((UO2)(NO3)2(H2O)2·(DPO)), U-DPO-2 ((UO2)(NO3)2(DPO)), and U-DPO-3 ((UO2)(DPO)(µ2-OH)2), where DPO takes three different kinds of coordination modes, i.e. uncoordinated, monodentate, and biconnected. The utilization of UO2(CF3SO3)2 in acetonitrile, instead of an aqueous solution of uranyl nitrate, precludes the participation of nitrate and hydroxyl, and ensures the engagement of DPO ligands (4-5 DPO ligands for each uranyl) in a uranyl coordination sphere of U-DPO-4 ([(UO2)(CF3SO3)(DPO)2](CF3SO3)), U-DPO-5 ([UO2(H2O)(DPO)2](CF3SO3)2) and U-DPO-6 ([(UO2)(DPO)2.5](CF3SO3)2). Moreover, when combined with anionic carboxylate ligands, terephthalic acid (H2TPA), isophthalic acid (H2IPA), and succinic acid (H2SA), DPO works well with them to produce four mixed-ligand uranyl compounds with similar structures of two-dimensional (2D) networks or three-dimensional (3D) frameworks, U-DPO-7 ((UO2)(TPA)(DPO)), U-DPO-8 ((UO2)2(DPO)(IPA)2·0.5H2O), U-DPO-9 ((UO2)(SA)(DPO)·H2O), and U-DPO-10 ((UO2)2(µ2-OH)(SA)1.5(DPO)). Density functional theory (DFT) calculations conducted to probe the bonding features between uranyl ions and different O-donor ligands show that the bonding ability of DPO is better than that of anionic CF3SO3 -, nitrate, and a neutral H2O molecule and comparable to that of an anionic carboxylate group. Characterization of physicochemical properties of U-DPO-7 and U-DPO-10 with high phase purity including infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and luminescence properties is also provided.

3.
Inorg Chem ; 61(7): 3058-3071, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35130695

RESUMO

The propensity of uranyl for hydrolysis in aqueous environments prevents precise control of uranyl species in the scenarios of on-demand separation and tailored synthesis. Herein, using cucurbit[7]uril (CB[7]) as the macrocyclic molecule and 4,4'-bipyridine-N,N'-dioxide (DPO) as the string molecule, we propose a new kind of multidentate pseudorotaxane ligand, DPO@CB[7] for capturing uranyl species at different pH's. With the aprotic nature of DPO for metal coordination, the coordination ability of the DPO@CB[7] ligand is less affected by pH and can work in a wide range of pH's. Furthermore, by adaptive uranyl coordination, this aprotic pseudorotaxane ligand achieves effective recognition for different uranyl species ranging from monomeric to tetrameric originating from hydrolysis at varying pH's, and four novel uranyl-rotaxane compounds (URC1-4) are successfully obtained. Single-crystal X-ray diffraction analysis reveals that the DPO@CB[7] ligand coordinates with uranyl centers from monomeric to tetrameric in four different modes, as a result of structural flexibility of the DPO@CB[7] pseudorotaxane ligand. A detailed discussion for conformation flexibility of the DPO@CB[7] ligand has been conducted on the position changes of the DPO ligand trapped in the CB[7], which thus reveals good adaptivity of DPO@CB[7] that is noncovalently bonded as a supramolecular motif. In addition, characterization of the physicochemical properties of URC1 and URC2 with high phase purity, including powder X-ray diffraction (PXRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), and luminescence properties, are also provided. This work provides a good case of an adaptive pseudorotaxane ligand for the recognition and capture of different uranyl species and will bring valuable hints to the design of multifunctional supramolecular ligands for actinide separation in the future.

4.
ACS Appl Mater Interfaces ; 13(34): 41120-41130, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410112

RESUMO

A new three-layered film was fabricated on magnesium (Mg) alloy via electroplating to guard against corrosion in a chloride aqueous environment, which consisted of an underlying double-layered zinc/copper (Zn/Cu) and a top aluminum-zirconium (Al-Zr) layer. The Zn/Cu underlayers not only impeded the galvanic corrosion between the Al-Zr coating and Mg alloy but also improved the adhesive ability between the substrate and the upper Al-Zr layer. Herein, we discussed the nucleus sizes of Al-Zr coatings at the stage of nucleation carried out with different contents of ZrCl4 in AlCl3-1-butyl-3-methylimidazolium chloride ionic liquid. The sandwichlike three-layered Zn/Cu/Al-Zr coatings were systematically investigated by surface morphology, phase structure, hardness, anticorrosion performances, and first-principles calculations. The corrosion current density declined from 1.461 × 10-3 A·cm-2 of bare Mg to 4.140 × 10-7 A·cm-2 of the Zn/Cu/Al-Zr3 sample. Neutral salt spray testing demonstrated that the Zn/Cu/Al-Zr3 sample showed no evident signs of corrosion after 6 days of exposure. The enhancement of the corrosion protection property was related to the fact that the application of the Cu layer changed the corrosion direction from initial longitudinal corrosion to extended lateral corrosion and the top Al-Zr coating hindered the transmission of aggressive ions. In addition, upon increasing the Zr content in the alloy films, the Fermi energy reduced initially and then increased. The Al-Zr3 alloy with 8.3 atom % Zr showed the lowest Fermi energy (-3.0823 eV), which exhibited the most efficient corrosion protection. These results showed that the prepared three-layered coating provided reliable corrosion protection to Mg alloy and may thus promote its practical applications.

5.
RSC Adv ; 12(2): 790-797, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35425104

RESUMO

Two isomeric diglycolamide (DGA) extractants, N,N'-dimethyl-N,N'-dioctyl diglycolamide (LI) and N,N-dimethyl-N',N'-dioctyl diglycolamide (LII), were used to perform a comparative study on the extraction performances towards several lanthanides by extraction experiments and theoretical calculations. The experimental results show that both LI and LII show a positive sequence on the extraction of lanthanides, and LI exhibits the higher complex ability with these lanthanides than LII, except for La and Ce. Slope analysis shows that 1:2 or 1:3 complexes are formed between the two ligands and the metal ions. The geometrical structures of the complexes were optimized in the gas phase by density functional theory (DFT) on the basis of complex compositions. The results of bond lengths, MBOs and topological analysis indicated that the electrostatic interaction between metal ions and two amide O atoms in the LII ligand is not as homogeneous as in LI, and this inhomogeneity is likely to be related to the poor extraction performance of LII.

6.
RSC Adv ; 11(45): 27969-27977, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480733

RESUMO

A novel asymmetric diglycolamide N,N-dimethyl-N',N'-dioctyl diglycolamide (LII) was synthesized. The Nd(iii) extraction behavior from HNO3 and loading capability of the solution of LII in 40/60 (v/v)% n-octanol/kerosene were studied. Analyses by the slope method, ESI-MS, and FT-IR indicated that, similar to the previously studied isomer ligand N,N'-dimethyl-N,N'-dioctyl diglycolamide (LI), 1 : 3 Nd(iii)/LII complexes formed. Under the same experimental conditions, the distribution ratio and limiting organic concentration of LII towards Nd(iii) were smaller than those of LI, but the critical aqueous concentration of LII was larger, which implies that LII exhibited poorer extraction and loading capabilities towards Nd(iii) than LI, and LII has a tendency to be less likely to form the third phase. The quasi-relativistic density functional theory (DFT) calculation was performed to provide some explanations for the differences in their extraction behaviors. The electrostatic potential of the ligands indicated that the electron-donating ability of the amide O atoms in LII displayed certain differences compared with LI. This inhomogeneity in LII affected the interaction between LII and Nd(iii), as supported by QTAIM and bonding nature analysis, and it seemed to reflect in the extraction performance towards Nd(iii).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA