RESUMO
Flue gas lead emission during sludge incineration damages to human health and ecological environment seriously. Therefore, a denitrifying bio-trickling filter (DNBTF) for lead removal in flue gas from sludge incineration was investigated. Lead removal efficiency was up to 90.7% in 60 days' operation. Lead speciation in biofilms of DNBTF consists of 84.27% residue lead, 15.18% organic bound lead, and less than 1% exchangeable and reducible lead. Lead resistant bacteria and lead resistant-denitrifying bacteria accounted for 85.04% and 58.25%, respectively. Lead resistant microorganisms(Pseudomonas, Azoarcus, Stappia, Pararhodobacter, Paracoccus, Azospirillum, Hyphomonas, Rhodobacter, Polymorphum, Brevunimonas, Stenotrophomonas) could resist the toxicity of Pb2+ in flue gas by transport protein and binding protein, and detoxify Pb2+ in flue gas by extracellular polymeric substances (EPS) adsorption, protein binding and precipitation under the action of resistance genes, such as pbrAB, golT, troABCD, znuABC, czcABCD, pcoB, copA, as shown by integrated metagenomic and metaproteomic analyses. The biofilm was characterized by FTIR, XRD, 3D-EEM, and SEM-EDS. XRD and SEM-EDS spectra indicated the formation of pyromorphite from bioconversion of lead in flue gas. Lead-containing flue gas was bio-stabilized in the form of pyromorphite and HA-Pb via complexation of humic acids in extracellular polymeric substances (EPS), biosorption and biodeposition. This provides a new way of sludge incineration flue gas lead removal using a denitrifying biotricking filter.
Assuntos
Incineração , Esgotos , Proteínas de Transporte , Desnitrificação , Humanos , Substâncias Húmicas , Chumbo , Metagenômica , Minerais , Fosfatos , Esgotos/químicaRESUMO
Volatile organic compounds (VOCs) harm human health and the ecological environment. This work demonstrated manganese oxide catalytic membrane coupled to biodegradation of toluene in a catalytic membrane biofilm rector (CMBfR). Toluene removal efficiency in CMBfR was up to 91% in a 200-day operation. Manganese oxide combined to membrane biofilm reactor could promote degradation of toluene. Manganese oxide catalysts were characterized by XRD, Raman, XPS, and FT-IR. Raman and XPS spectra verified the existence of Mn defects, adsorbed oxygen species, and the oxygen vacancy, which was catalytic of toluene on the Mn oxides coated membranes significantly. Pseudomonas, Hydrogenophaga, Flavobacterium, Bacillus, Clostridium and Prosthecobacter were the dominant bacteria of toluene degradation. Mn oxides catalysis could degrade toluene into intermediate products; these products were entered into the biological phase eventually metabolized to CO2 and H2O. These results show that the catalytic membrane biofilm reactor is achievable and opens new possibilities for applying the catalytic membrane biofilm reactor to VOCs treatment.
Assuntos
Tolueno , Compostos Orgânicos Voláteis , Dióxido de Carbono , Catálise , Humanos , Compostos de Manganês , Oxirredução , Óxidos , Oxigênio , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Nitrogen oxides (NOx) and mercury (Hg) are commonly found coexistent pollutants in combustion flue gas. Ever-increasing emission of atmospheric Hg and NOx has caused considerable environmental risks. Traditional flue gas demercuration and denitration techniques have many socioeconomic, technological and environmental drawbacks. Biotechnologies can be a promising and prospective alternative strategy. This article discusses theoretical foundation (biochemistry and genomic basis) and technical potentials (Hg0 bio-oxidation coupled to denitrification) of bioremoval of Hg and NOx in flue gas and summarized recent experimental and technological advances. Finally, several specific technical perspectives have been put forward to better guide future researches.