Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Integr Neurosci ; 22(6): 144, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38176931

RESUMO

BACKGROUND: Experimental investigations have reported the efficacy of marrow mesenchymal stem cell-derived exosomes (MSC-Exos) for the treatment of ischemic stroke. The therapeutic mechanism, however, is still unknown. The purpose of the study is to show whether MSC-Exos increases astrocytic glutamate transporter-1 (GLT-1) expression in response to ischemic stroke and to investigate further mechanisms. METHODS AND RESULTS: An in vitro ischemia model (oxygen-glucose deprivation/reperfusion, OGD/R) was used. MSC-Exos was identified by Western blot (WB) and transmission electron microscopy (TEM). To further investigate the mechanism, MSC-Exos, miR-124 inhibitor, and mimics, and a mTOR pathway inhibitor (rapamycin, Rap) were used. The interaction between GLT-1 and miR-124 was analyzed by luciferase reporter assay. The GLT-1 RNA expression and miR-124 was assessed by quantitative real-time polymerase chain reaction (qRTPCR). The protein expressions of GLT-1, S6, and pS6 were detected by WB. Results demonstrated that MSC-Exos successfully inhibited the decrease of GLT-1 and miR-124 expression and the increase of pS6 expression in astrocytes after OGD/R. miR-124 inhibitor suppressed the effect of MSC-Exos on GLT-1 upregulation after OGD/R. Rapamycin notably decreased pS6 expression with significantly higher GLT-1 expression in astrocytes injured by OGD/R. Luciferase activity of the reporter harboring the wild-type or mutant GLT-1 3'UTR was not inhibited by miR-124 mimics. Further results showed that the inhibiting effect of MSC-Exos on pS6 expression and promoting effect of MSC-Exos on GLT-1 expression could be reversed by miR-124 inhibitor after OGD/R; meanwhile, the above conditions could be reversed again by rapamycin. CONCLUSIONS: Results show that miR-124 and the mTOR pathway are involved in regulation of MSC-Exos on GLT-1 expression in astrocytes injured by OGD/R. miR-124 does not directly target GLT-1. MSC-Exos upregulates GLT-1 expression via the miR-124/mTOR pathway in astrocytes injured by OGD/R.


Assuntos
Exossomos , AVC Isquêmico , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Humanos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Medula Óssea/metabolismo , Exossomos/genética , Exossomos/metabolismo , Glucose/metabolismo , MicroRNAs/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
2.
Clin Transl Med ; 12(9): e1042, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36116131

RESUMO

BACKGROUND: NF-κB signaling is widely linked to the pathogenesis and treatment resistance in cancers. Increasing attention has been paid to its anti-oncogenic roles, due to its key functions in cellular senescence and the senescence-associated secretory phenotype (SASP). Therefore, thoroughly understanding the function and regulation of NF-κB in cancers is necessary prior to the application of NF-κB inhibitors. METHODS: We established glioblastoma (GBM) cell lines expressing ectopic TCF4N, an isoform of the ß-catenin interacting transcription factor TCF7L2, and evaluated its functions in GBM tumorigenesis and chemotherapy in vitro and in vivo. In p65 knock-out or phosphorylation mimic (S536D) cell lines, the dual role and correlation of TCF4N and NF-κB signaling in promoting tumorigenesis and chemosensitivity was investigated by in vitro and in vivo functional experiments. RNA-seq and computational analysis, immunoprecipitation and ubiquitination assay, minigene splicing assay and luciferase reporter assay were performed to identify the underlying mechanism of positive feedback regulation loop between TCF4N and the p65 subunit of NF-κB. A eukaryotic cell-penetrating peptide targeting TCF4N, 4N, was used to confirm the therapeutic significance. RESULTS: Our results indicated that p65 subunit phosphorylation at Ser 536 (S536) and nuclear accumulation was a promising prognostic marker for GBM, and endowed the dual functions of NF-κB in promoting tumorigenesis and chemosensitivity. p65 S536 phosphorylation and nuclear stability in GBM was regulated by TCF4N. TCF4N bound p65, induced p65 phosphorylation and nuclear translocation, inhibited its ubiquitination/degradation, and subsequently promoted NF-κB activity. p65 S536 phosphorylation was essential for TCF4N-led senescence-independent SASP, GBM tumorigenesis, tumor stem-like cell differentiation and chemosensitivity. Activation of p65 was closely connected to alterative splicing of TCF4N, a likely positive feedback regulation loop between TCF4N and p65 in GBM. 4N increased chemosensitivity, highlighting a novel anti-cancer strategy. CONCLUSION: Our study defined key roles of TCF4N as a novel regulator of NF-κB through mutual regulation with p65 and provided a new avenue for GBM inhibition.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioblastoma , Proteína 2 Semelhante ao Fator 7 de Transcrição , Fator de Transcrição RelA , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Peptídeos Penetradores de Células , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Luciferases , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , beta Catenina
3.
Adv Sci (Weinh) ; 9(26): e2200169, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35843865

RESUMO

Sustained activation of signal transducer and activator of transcription 3 (STAT3) is a critical contributor in tumorigenesis and chemoresistance, thus making it an attractive cancer therapeutic target. Here, SH2 domain-containing adapter protein F (SHF) is identified as a tumor suppressor in glioblastoma Multiforme (GBM) and its negative regulation of STAT3 activity is characterized. Mechanically, SHF selectively binds and inhibits acetylated STAT3 dimerization without affecting STAT3 phosphorylation or acetylation. Additionally, by blocking STAT3-DNMT1 (DNA Methyltransferase 1) interaction, SHF relieves methylation of tumor suppressor genes. The SH2 domain is documented to be essential for SHF's actions on STAT3, and almost entirely replaces the functions of SHF on STAT3 independently. Moreover, the peptide C16 a peptide derived from the STAT3-binding sites of SHF inhibits STAT3 dimerization and STAT3/DNMT1 interaction, and achieves remarkable growth inhibition in GBM cells in vitro and in vivo. These findings strongly identify targeting of the SHF/STAT3 interaction as a promising strategy for developing an optimal STAT3 inhibitor and provide early evidence of the potential clinical efficacy of STAT3 inhibitors such as C16 in GBM.


Assuntos
Glioblastoma , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dimerização , Genes Supressores de Tumor , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fosforilação , Multimerização Proteica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Cancer Cell Int ; 22(1): 170, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488304

RESUMO

BACKGROUND: Gliomas are the most common primary malignant tumours of the central nervous system (CNS). To improve the prognosis of glioma, it is necessary to identify molecular markers that may be useful for glioma therapy. HOXC6, an important transcription factor, is involved in multiple cancers. However, the role of HOXC6 in gliomas is not clear. METHODS: Bioinformatic and IHC analyses of collected samples (n = 299) were performed to detect HOXC6 expression and the correlation between HOXC6 expression and clinicopathological features of gliomas. We collected clinical information from 177 to 299 patient samples and estimated the prognostic value of HOXC6. Moreover, cell proliferation assays were performed. We performed Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA) based on ChIP-seq and public datasets to explore the biological characteristics of HOXC6 in gliomas. RNA-seq was conducted to verify the relationship between HOXC6 expression levels and epithelial-mesenchymal transition (EMT) biomarkers. Furthermore, the tumour purity, stromal and immune scores were evaluated. The relationship between HOXC6 expression and infiltrating immune cell populations and immune checkpoint proteins was also researched. RESULTS: HOXC6 was overexpressed and related to the clinicopathological features of gliomas. In addition, knockdown of HOXC6 inhibited the proliferation of glioma cells. Furthermore, increased HOXC6 expression was associated with clinical progression. The biological role of HOXC6 in gliomas was primarily associated with EMT and the immune microenvironment in gliomas. High HOXC6 expression was related to high infiltration by immune cells, a low tumour purity score, a high stromal score, a high immune score and the expression of a variety of immune checkpoint genes, including PD-L1, B7-H3 and CLTA-4. CONCLUSIONS: These results indicated that HOXC6 might be a key factor in promoting tumorigenesis and glioma progression by regulating the EMT signalling pathway and might represent a novel immune therapeutic target in gliomas.

5.
Oxid Med Cell Longev ; 2022: 5585384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450406

RESUMO

Heat shock protein 90 (HSP90) is widely found in brain tissue. HSP90 inhibition has been proven to have neuroprotective effects on ischemic strokes. In order to study the role of HSP90 in traumatic brain injury (TBI), we carried out the present study. A novel inhibitor of the HSP90 protein, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DA), has been investigated for its function on the blood-brain barrier (BBB) damage after traumatic brain injury (TBI) in mouse models. These C57BL/6 mice were used as a TBI model and received 17-DA (0.1 mg/kg/d, intraperitoneally) until the experiment ended. To find out whether 17-DA may protect against TBI in vitro, bEnd.3 cells belonging to mouse brain microvascular endothelium were used. The HSP90 protein expressions were raised after TBI at the pericontusional area, especially at 3 d. Our study suggested that 17-DA-treated mice improved the recovery ability of neurological deficits and decreased brain edema, Evans blue extravasation, and the loss of tight junction proteins (TJPs) post-TBI. 17-DA significantly promoted cell proliferation and alleviated apoptosis by inhibiting the generation of intracellular reactive oxygen species (ROS) to downregulate cleaved caspase-3, matrix metallopeptidase- (MMP-) 2, MMP-9, and P-P65 in bEnd.3 cells after the injury. As a result, we assumed that the HSP90 protein was activated post-TBI, and inhibition of HSP90 protein reduced the disruption of BBB and improved the neurobehavioral scores in a mouse model of TBI through the action of 17-DA, which inhibited ROS generation and regulated MMP-2, MMP-9, NF-κB, and caspase-associated pathways. Thus, blocking HSP90 protein may be a potential therapeutic strategy for TBI.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Animais , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP90 , Proteínas de Choque Térmico/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
6.
Cancer Cell Int ; 21(1): 445, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425834

RESUMO

Glioma is the most common malignant primary brain tumour in adults. Despite improvements in neurosurgery and radiotherapy, the prognosis of glioma patients remains poor. One of the main limitations is that there are no proper clinical therapeutic targets for glioma. Therefore, it is crucial to find one or more effective targets. Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT family of genes. Abnormal expression of STAT3 is involved in the process of cell proliferation, migration, invasion, immunosuppression, angiogenesis, dryness maintenance, and resistance to radiotherapy and chemotherapy in glioma. Therefore, STAT3 has been considered an ideal therapeutic target in glioma. Noncoding RNAs (ncRNAs) are a group of genes with limited or no protein-coding capacity that can regulate gene expression at the epigenetic, transcriptional and posttranscriptional level. In this review, we summarized the ncRNAs that are correlated with the ectopic expression of STAT3 in glioma.

7.
Front Genet ; 12: 625234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276757

RESUMO

Signal transducer and activator of transcription (STAT) family genes-of which there are seven members: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6-have been associated with the progression of multiple cancers. However, their prognostic values in glioma remain unclear. In this study, we systematically investigated the expression, the prognostic value, and the potential mechanism of the STAT family genes in glioma. The expression of STAT1/2/3/5A/6 members were significantly higher and positively correlated with IDH mutations, while the expression of STAT5B was lower and negatively correlated with IDH mutations in glioma. Survival analysis indicated that the upregulation of STAT1/2/3/5A/6 and downregulation of STAT5B expression was associated with poorer overall survival in glioma. Joint effects analysis of STAT1/2/3/5A/5B/6 expression suggested that the prognostic value of the group was more significant than that of each individual gene. Thus, we constructed a risk score model to predict the prognosis of glioma. The receiver operating characteristic curve and calibration curves showed good performance as prognostic indicators in both TCGA (The Cancer Genome Atlas) and the CGGA (Chinese Glioma Genome Atlas) databases. Furthermore, we analyzed the correlation between STAT expression with immune infiltration in glioma. The Protein-protein interaction network and enrichment analysis showed that STAT members and co-expressed genes mainly participated in signal transduction activity, Hepatitis B, the Jak-STAT signaling pathway, transcription factor activity, sequence-specific DNA binding, and the cytokine-mediated signaling pathway in glioma. In summary, our study analyzed the expression, prognostic values, and biological roles of the STAT gene family members in glioma, based on which we developed a new risk score model to predict the prognosis of glioma more precisely.

8.
Pathol Res Pract ; 224: 153539, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34246852

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and development of glioma. LINC00662 has been involved in the pathogenesis of various human cancers. However, the mechanism underlying which LINC00662 exerts its role in glioma needs further exploration. In addition, regulation mechanism of LINC00662 expression in glioma remains unknown. METHODS AND MATERIALS: RT-qPCR was performed to evaluate the expression levels of LINC00662, miR-340-5p in glioma tissues and cell lines. The effect of LINC00662 and miR-340-5p in cell proliferation and invasion was assessed by Cell Counting Kit-8(CCK-8), clone colony formation and Transwell assay. Luciferase reporter assays and RNA immunoprecipitation assay validated the miR-340-5p-target relationships with LINC00662 or STAT3. CHIP-qPCR and Luciferase reporter assays were used to demonstrate the interaction between STAT3 and the promoter region of LINC00662. A tumor xenografts model was implemented to verify the effect of LINC00662 on glioma development in vivo. RESULTS: We found that LINC00662 was frequently highly expressed and related to the malignant phenotype of glioma. LINC00662 knockdown inhibited the proliferation, invasion and glioma genesis of glioma. LINC00662 acted as a ceRNA sponging miR-340-5p to protect the expression of STAT3. In addition, STAT3 was forced to the promoter region of LINC00662 and promoted its transcription. In vivo experiments demonstrated that targeting LINC00662 may be a potential strategy in glioma therapy. CONCLUSION: There was a positive regulation loop between LINC00662 and STAT3 in glioma. LINC00662 might be an oncogene in glioma. Targeting LINC00662 was a potential strategy in glioma therapy.


Assuntos
Carcinogênese/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , Fator de Transcrição STAT3/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Humanos , Camundongos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia
9.
BMC Cancer ; 21(1): 451, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892666

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) family belongs to the transmembrane protein receptor of the tyrosine kinase I subfamily and has 4 members: EGFR/ERBB1, ERBB2, ERBB3, and ERBB4. The EGFR family is closely related to the occurrence and development of a variety of cancers. MATERIALS/METHODS: In this study, we used multiple online bioinformatics websites, including ONCOMINE, TCGA, CGGA, TIMER, cBioPortal, GeneMANIA and DAVID, to study the expression profiles, prognostic values and immune infiltration correlations of the EGFR family in glioma. RESULTS: We found that EGFR and ERBB2 mRNA expression levels were higher in glioblastoma (GBM, WHO IV) than in other grades (WHO grade II & III), while the ERBB3 and ERBB4 mRNA expression levels were the opposite. EGFR and ERBB2 were notably downregulated in IDH mutant gliomas, while ERBB3 and ERBB4 were upregulated, which was associated with a poor prognosis. In addition, correlation analysis between EGFR family expression levels and immune infiltrating levels in glioma showed that EGFR family expression and immune infiltrating levels were significantly correlated. The PPI network of the EGFR family in glioma and enrichment analysis showed that the EGFR family and its interactors mainly participated in the regulation of cell motility, involving integrin receptors and Rho family GTPases. CONCLUSIONS: In summary, the results of this study indicate that the EGFR family members may become potential therapeutic targets and new prognostic markers for glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/mortalidade , Bases de Dados de Proteínas , Regulação para Baixo , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioma/mortalidade , Glioma/patologia , Humanos , Proteínas de Neoplasias/metabolismo , Prognóstico , RNA Mensageiro/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4/metabolismo , Regulação para Cima
10.
Biomed Pharmacother ; 134: 111115, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341046

RESUMO

Glioblastoma (GBM) is the most common primary malignant tumor in adults, and its morbidity and mortality are very high. Although progress has been achieved in the treatment of GBM, such as surgery, chemotherapy and radiotherapy, in recent years, the prognosis of patients with GBM has not improved significantly. MicroRNAs (miRNAs) are endogenous noncoding single-stranded RNAs consisting of approximately 20-22 nucleotides that regulate gene expression at the posttranscriptional level by binding to target protein-encoding mRNAs. Notably, miRNAs regulate various carcinogenic pathways, one of which is the epidermal growth factor receptor (EGFR) signaling pathway, which controls cell proliferation, invasion, migration, angiogenesis and apoptosis. In this review, we summarize the novel discoveries of roles for miRNAs targeting the factors in the EGFR signaling pathway in the occurrence and development of GBM. In addition, we describe their potential roles as biomarkers for the diagnosis and prognosis of GBM and for determining the treatment resistance of GBM and the efficacy of therapeutic drugs.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , MicroRNAs/genética , Tolerância a Radiação , Transdução de Sinais
11.
Cancer Cell Int ; 20(1): 536, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33292213

RESUMO

Long noncoding RNAs (lncRNAs) are composed of > 200 nucleotides; they lack the ability to encode proteins but play important roles in a variety of human tumors. A large number of studies have shown that dysregulated expression of lncRNAs is related to tumor oncogenesis and progression. Emerging evidence shows that SNHG3 is a novel oncogenic lncRNA that is abnormally expressed in various tumors, including osteosarcoma, liver cancer, lung cancer, etc. SNHG3 primarily competes as a competitive endogenous RNA (ceRNA) that targets tumor suppressor microRNAs (miRNAs) and ceRNA mechanisms that regulate biological processes of tumors. In addition, abnormal expression of SNHG3 is significantly correlated with patient clinical features. Upregulation of SNHG3 contributes to biological functions, including tumor cell proliferation, migration, invasion and EMT. Therefore, SNHG3 may represent a potential diagnostic and prognostic biomarker, as well as a novel therapeutic target.

12.
Mol Clin Oncol ; 13(5): 45, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32874575

RESUMO

Long non-coding RNAs (lncRNAs) have been demonstrated to serve important roles in a variety of human tumor types. The lncRNA small nucleolar RNA host gene 7 (SNHG7) is associated with a variety of cancer types, such as esophageal cancer, breast cancer and gastric neoplasia. Based on previous studies that examined SNHG7 expression in tumors, it has become clear that SNHG7 modulates tumorigenesis and cancer progression by acting as a competing endogenous RNA. SNHG7 can sponge tumor-suppressive microRNAs and regulate downstream signaling pathways. In addition, overexpression of SNHG7 is associated with the clinical characteristics of patients with cancer by regulating cellular proliferation, invasion and metastasis and by inhibiting apoptosis via a variety of mechanisms of action. The function of SNHG7 in tumorigenesis and cancer progression indicates that it can potentially act as a novel therapeutic target or a diagnostic biomarker for cancer therapy or detection, respectively.

13.
Pathol Res Pract ; 216(4): 152868, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32111444

RESUMO

BACKGROUND: miR-129-5p has been reported to be abnormally expressed and plays an important role in the progression of various malignancies. However, its role in gliomas and its exact molecular mechanism need further research. METHODS AND MATERIALS: RT-qPCR was performed to evaluate miR-129-5p and HOXC10 mRNA expression levels in tissues and cell lines. Cell proliferation was detected via Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and clone formation assays. Luciferase assays were used to validate the binding of seeds between miR-129-5p and HOXC10. A tumor xenograft model was developed to study the effect of miR-129-5p on glioma growth in vivo. RESULTS: miR-129-5p was expressed at low levels in glioma tissues and cell lines. miR-129-5p overexpression inhibited glioma proliferation, migration and invasion. miR-129-5p negatively and directly targeted HOXC10. At the same time, HOXC10 was upregulated in glioma cancer, and HOXC10 knockdown inhibited cell proliferation, migration and invasion. CONCLUSION: miR-129-5p inhibits glioma development by altering HOXC10 expression and may therefore serve as a new diagnostic marker and therapeutic target for glioma in the future.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas de Homeodomínio/biossíntese , MicroRNAs/metabolismo , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Camundongos , MicroRNAs/genética , Invasividade Neoplásica/genética
14.
Neurol Res ; 41(12): 1059-1068, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31584354

RESUMO

Objective: Despite the application of dexmedetomidine (DEX) as a perioperative adjuvant in local analgesia, the exact analgesic mechanism underpinning chronic neuropathic pain (CNP) awaits our elucidation. Methods: We investigated the molecular mechanisms of the anti-nociceptive effect of DEX on neuropathic pain in a mouse model induced by chronic constriction injury (CCI). Results: DEX administration significantly increased the paw withdrawal latency (PWL) values 0.5 to 2 h post-injection in CCI-induced CNP mice at day 5 to 21 versus dimethyl sulfoxide (DMSO)-treated mice, confirming its analgesic effect. The c-Fos expression was significantly elevated in CCI mice versus the sham-operated group, whereas the elevation was mitigated by DEX injection. Subsequently, the involvement of MKP1 and MKP3 in the pathogenesis of chronic neuropathic pain was evaluated. Western blotting analyses revealed significant decrease in both MKP1 and MKP3 in the spinal cord in CCI group versus the sham group. DEX markedly elevated the MKP3 expression and modestly reduced the MKP1 expression, with insignificant difference in the latter. Co-injection of BCI (an MKP3 inhibitor) and DEX evidently reduced the PWL values in CCI mice. Furthermore, DEX significantly downregulated the phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2, down-stream effector of MKP3 in CCI mice, whereas the downregulation was reversed by BCI. Conclusion: We confirmed that DEX exerts the analgesic effect on chronic neuropathic pain via the regulation of MKP3/ERK1/2 signaling pathway, which may contribute to clarification of the molecular mechanism and novel therapy for chronic neuropathic pain.


Assuntos
Analgésicos não Narcóticos/administração & dosagem , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Dexmedetomidina/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Animais , Modelos Animais de Doenças , Injeções Espinhais , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
15.
Brain Res Bull ; 149: 231-239, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004734

RESUMO

High-concentration glutamic acid (Glu) induced by ischemic stroke can be inhibited by glutamate transporter-1 (GLT-1), which is the main mechanism for preventing excessive extracellular glutamate accumulation in the central nervous system. Upregulation of miR-124 could reduce the infarct area and promote the recovery of neurological function after ischemic stroke. A previous study investigated whether miR-124 could regulate GLT-1 expression in normal culture conditions. However, the role of miR-124 in the regulation of GLT-1 expression and further mechanisms after ischemic stroke remain unclear. In this study, the effects of miR-124 on GLT-1 expression in astrocytes after ischemic stroke were explored using an in vitro model of ischemic stroke (oxygen-glucose deprivation/reperfusion, OGD/reperfusion). The expression of GLT-1 was significantly decreased with lower expression of miR-124 in astrocytes injured by OGD/reperfusion. When miR-124 expression was improved, the expression of GLT-1 was notably increased in astrocytes injured by OGD/reperfusion. The results revealed that GLT-1 expression in astrocytes had a relationship with miR-124 after OGD/reperfusion. However, a direct interaction could not be confirmed with a luciferase reporter assay. Further results demonstrated that an inhibitor of Akt could decrease the increased protein expression of GLT-1 induced by miR-124 mimics, and an inhibitor of mTOR could increase the reduced protein expression of GLT-1 caused by a miR-124 inhibitor in astrocytes injured by different OGD/reperfusion conditions. These results indicated that miR-124 could regulate GLT-1 expression in astrocytes after OGD/reperfusion through the Akt and mTOR pathway.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , MicroRNAs/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , MicroRNAs/genética , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Serina-Treonina Quinases TOR/metabolismo
16.
Int J Biochem Cell Biol ; 104: 34-42, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30172723

RESUMO

Oral leukoplakia (OL) is the most common premalignancy in the oral cavity. The objective of this study was to investigate the biological role of transglutaminase 3 (TGM3) in malignant transformation of OL and its clinical value for predicting oral squamous cell carcinoma (OSCC) risk in patients with OL. Immunohistochemistry was used to measure TGM3 expression in OL samples from 98 patients. Patient clinicopathological and follow-up data were analyzed. The TGM3 biological role in OL cells was investigated in gain-of-function and loss-of-function assays, and the TGM3 downregulated mechanism in OLs was characterized. TGM3 mRNA and protein expressions were frequently downregulated in OL cells and samples. DNA hypermethylation was a mechanism of TGM3 downregulation. TGM3 overexpression and silencing affected the proliferation, colony formation, and apoptosis of OL cells through apoptosis-related protein dysregulations. Lower TGM3 levels were strongly associated with the grade of epithelial dysplasia and OSCC development. Multivariate analyses showed that TGM3 was the independent predictor for malignant transformation of OL. Collectively, these data indicated that TGM3 played an important role in OL malignant transformation and may serve as a predictor to identify OL with OSCC development.


Assuntos
Transformação Celular Neoplásica , Leucoplasia Oral/enzimologia , Leucoplasia Oral/patologia , Neoplasias Bucais/patologia , Transglutaminases/metabolismo , Adolescente , Adulto , Idoso , Apoptose , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucoplasia Oral/genética , Masculino , Pessoa de Meia-Idade , Risco , Transglutaminases/genética , Adulto Jovem
17.
Neurochem Res ; 43(10): 1863-1868, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066160

RESUMO

MicroRNAs (miRNAs), an abundant class of small noncoding RNA molecules, which regulate gene expression by functioning as post-transcriptional regulatory factors, have been identified as key components of traumatic brain injury (TBI) progression. MicroRNA-21 (miR-21) is a recently identified typical miRNA that is involved in the signaling pathways of inflammation, neuronal apoptosis, reactive gliosis, disruption of blood brain barrier, angiogenesis and recovery process induced by physical exercises in TBI. Hence, miR-21 is now considered as a potential therapeutic target of TBI. We review the correlative literature and research progress regarding the roles of miR-21 in TBI in this article.


Assuntos
Apoptose/genética , Lesões Encefálicas Traumáticas/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Expressão Gênica/genética , Humanos
18.
Am J Cancer Res ; 8(7): 1200-1213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094094

RESUMO

To date, the anti-tumor mechanism of the deleted in liver cancer 2 (DLC2) in gliomas is still unclear. The study shows that TAp73α expression and TAp73α/TAp73ß ratio are frequently high in gliomas and that TAp73α and TAp73ß have opposite roles in regulating proliferation and apoptosis of glioma cells. Moreover, DLC2 is low-expressed in gliomas, which negatively correlates with TAp73α expression and TAp73α/TAp73ß ratio. More importantly, DLC2 inhibits development of glioma by decreasing expression of TAp73α, which changes the expression ratio of TAp73α/TAp73ß in glioma cells. Mechanically, DLC2 interacts directly with TAp73α and induces TAp73α ubiquitination and degradation, which is mediated through SAM domain of DLC2 and TAp73α. In detail, DLC2 with SAM domain deletion fails to interact with TAp73α and induce TAp73α ubiquitination and degradation, and SAM deletion decreased tumorigenesis-inhibition effect of DLC2. In conclusion, DLC2 inhibits glioma development by inducing TAp73α degradation and subsequent change of TAp73α/TAp73ß expression ratio.

19.
Nat Commun ; 9(1): 2504, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950561

RESUMO

To date, the molecular mechanism underlying constitutive signal transducer and activator of transcription 3 (STAT3) activation in gliomas is largely unclear. In this study, we report that Smad6 is overexpressed in nuclei of glioma cells, which correlates with poor patient survival and regulates STAT3 activity via negatively regulating the Protein Inhibitors of Activated STAT3 (PIAS3). Mechanically, Smad6 interacts directly with PIAS3, and this interaction is mediated through the Mad homology 2 (MH2) domain of Smad6 and the Ring domain of PIAS3. Smad6 recruits Smurf1 to facilitate PIAS3 ubiquitination and degradation, which also depends on the MH2 domain and the PY motif of Smad6. Consequently, Smad6 reduces PIAS3-mediated STAT3 inhibition and promotes glioma cell growth and stem-like cell initiation. Moreover, the Smad6 MH2 transducible protein restores PIAS3 expression and subsequently reduces gliomagenesis. Collectively, we conclude that nuclear-Smad6 enhances glioma development by inducing PIAS3 degradation and subsequent STAT3 activity upregulation.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína Smad6/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Carcinogênese/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Estudos de Coortes , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/mortalidade , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Domínios Proteicos , Proteólise , Transdução de Sinais/genética , Taxa de Sobrevida , Ubiquitina-Proteína Ligases , Ubiquitinação/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA