Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 389: 110865, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191086

RESUMO

Non-alcoholic Fatty Liver Disease (NAFLD) is one of the common side effects of tamoxifen treatment for estrogen receptor-positive breast cancer, and is representative of disorders of energy metabolism. Fatty liver is induced after tamoxifen (TAM) inhibition of estrogen receptor activity, but the exact mechanism is not clear. This study investigated the effects and mechanisms of TAM-induced steatosis in the liver. The effects and mechanisms of TAM on hepatocyte lipid metabolism were assessed using C57BL/6 female mice and human hepatoma cells. TAM promoted fat accumulation in the liver by upregulation of Srebp-1c expression. Regarding the molecular mechanism, TAM promoted the recruitment of the auxiliary transcriptional activator, p300, and dissociated the auxiliary transcriptional repressor, nuclear receptor corepressor (NCOR), of the complexes, which led to enhancement of Srebp-1c transcription and an increase of triglyceride (TG) synthesis. Vitamin D (VD), a common fat-soluble vitamin, can decrease TAM-induced NAFLD by promoting p300 dissociation and NCOR recruitment. Tamoxifen promoted the recruitment and dissociation of co-transcription factors on the LXR/ER/RXR receptor complex, leading to a disorder of liver lipid metabolism. VD interfered with TAM-induced liver lipid metabolism disorders by reversing this process.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Feminino , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores X do Fígado/metabolismo , Tamoxifeno/farmacologia , Vitamina D/farmacologia , Receptores de Estrogênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Vitaminas/metabolismo , Vitaminas/farmacologia
2.
Inflamm Res ; 73(2): 289-304, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184500

RESUMO

OBJECTIVE: Intestinal fibrosis, a common and serious complication of inflammatory bowel disease (IBD), results from chronic inflammation. A high-cholesterol diet may be a risk factor for IBD and 27-hydroxylcholesterol (27HC) is the main human cholesterol metabolite. This study investigated whether 27HC can induce intestinal fibrosis. METHODS: The effects of cholesterol and 27HC on intestinal fibrosis were assessed in zebrafish and human intestinal epithelial Caco-2 cells. RESULTS: Cholesterol and 27HC induced intestinal inflammation and collagen deposition, inhibited E-cadherin (E-ca) expression in the intestinal epithelium, and promoted nuclear translocation of ß-catenin in zebrafish. Cholesterol and 27HC up-regulated expression of COL-1, α-SMA, CTGF, TIMP1, N-cadherin, vimentin, glycogen synthesis kinase-3ß (GSK-3ß) and ß-catenin, but inhibited E-ca, in Caco-2 cells. The expression of these proteins was inhibited by CYP27A1 knockdown and ß-catenin knockdown. 27HC-induced nuclear translocation of ß-catenin occurs in Caco-2 cells. p38, ERK, and AKT activate ß-catenin and thereby participate in 27HC-induced epithelia-mesenchymal transition (EMT) and fibrosis. 27HC-increased oxidative stress and the fibrosis and EMT markers, the nuclear translocation of ß-catenin, and the up-regulation of p-cell kinase proteins promoted by 27HC were inhibited by N-acetyl-L-cysteine (NAC). Folic acid (FA), resveratrol (RES), and NAC all ameliorated the 27HC-induced effects in Caco-2 cells and zebrafish. CONCLUSION: A high-cholesterol diet caused intestinal fibrosis in zebrafish, mediated by a major cholesterol metabolite, 27HC. 27HC increased oxidative stress and activated p38, ERK, AKT, and ß-catenin, leading to EMT of epithelial cells and intestinal fibrosis. FA and RES both ameliorated intestinal fibrosis by restraining 27HC-induced ß-catenin activation.


Assuntos
Glicogênio Sintase Quinase 3 beta , Doenças Inflamatórias Intestinais , Estresse Oxidativo , beta Catenina , Animais , Humanos , beta Catenina/metabolismo , Células CACO-2 , Transição Epitelial-Mesenquimal , Fibrose , Glicogênio Sintase Quinase 3 beta/metabolismo , Hidroxicolesteróis/farmacologia , Inflamação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
3.
Free Radic Biol Med ; 210: 462-477, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056577

RESUMO

BACKGROUND: Chronic liver injury caused by activation of hepatic stellate cells (HSCs) is a key event in the development of liver fibrosis (LF). A high-cholesterol diet can prompt accumulation of free cholesterol in HSCs, which promotes HSC activation and progression of LF. OBJECTIVE: 27-Hydroxycholesterol (27HC) is the most abundant cholesterol metabolite. Here, we investigated whether the HSC activation and LF induced by high cholesterol is caused by its metabolite 27HC, and whether TGFß classical signaling were involved in these processes. METHODS: In vitro, LX2 and HSC-T6 cells were used to explore the effects of 27HC on activation of HSCs, while LSECs were used to observe the effects of 27HC on capillarization. In vivo, zebrafish were used to assess the effect of 27HC on LF. RESULTS: The cholesterol metabolite 27HC promoted the proliferation of HSCs and up-regulated expression of COL-1 and α-SMA as well as CTGF and TIMP1. Also, 27HC up-regulated expression of Smad2/3 and phosphorylated Smad2/3 in HSCs. Furthermore, 27HC-induced up-regulation of COL-1, α-SMA, CTGF, and TIMP1 protein levels was inhibited by Smad2/3 knockout. In addition, 27HC down-regulated H3K27me3 by inhibition of EZH2 and promotion of UTX and JMJD3 expression via the TGFß signaling, thereby inducing activation of HSCs. Notably, 27HC significantly aggravated the pathological damage induced by DEN, and induced deposition of collagen fibers in zebrafish liver. Folic acid (FA) and resveratrol (RES) both reduced 27HC-induced production of reactive oxygen species (ROS) and inhibited the effects of TGFß signaling on EZH2, UTX, and JMJD3, thereby increasing H3K27me3, and finally jointly inhibiting LF. CONCLUSION: Cholesterol is metabolized to 27HC, which mediates activation of HSCs and onset of LF. Reduced expression of H3k27me3 by TGFß signaling is crucial to 27HC-induced LF. FA and RES ameliorated activation of HSCs and LF by reducing 27HC-induced production of ROS and regulating of H3K27me3.


Assuntos
Histonas , Lisina , Animais , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Peixe-Zebra/metabolismo , Regulação para Baixo , Espécies Reativas de Oxigênio/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/metabolismo , Colesterol/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Estresse Oxidativo , Nutrientes
4.
Chemosphere ; 337: 139308, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37364640

RESUMO

Human activities, including industrial and agricultural production, as well as domestic sewage discharge, have led to heavy metal pollution and eutrophication in coastal waters. This has caused a deficiency of dissolved inorganic phosphorus (DIP), but an excess dissolved organic phosphorus (DOP) and high concentrations of zinc. However, the impact of high zinc stress and different phosphorus species on primary producers remains unclear. This study examined the impact of different phosphorus species (DIP and DOP) and high zinc stress (1.74 mg L-1) on the growth and physiology of the marine diatom Thalassiosira weissflogii. The results showed that compared to the low zinc treatment (5 µg L-1), high zinc stress significantly decreased the net growth of T. weissflogii, but the decline was weaker in the DOP group than in the DIP group. Based on changes in photosynthetic parameters and nutrient concentrations, the study suggests that the growth inhibition of T. weissflogii under high zinc stress was likely due to an increase in cell death caused by zinc toxicity, rather than a decrease in cell growth caused by photosynthesis damage. Nonetheless, T. weissflogii was able to reduce zinc toxicity by antioxidant reactions through enhancing activities of superoxide dismutase and catalase and by cationic complexation through enhancing extracellular polymeric substances, particularly when DOP served as the phosphorus source. Furthermore, DOP had a unique detoxification mechanism by producing marine humic acid, which is conducive to complexing metal cations. These results provide valuable insights into the response of phytoplankton to environmental changes in coastal oceans, particularly the effects of high zinc stress and different phosphorus species on primary producers.


Assuntos
Diatomáceas , Humanos , Diatomáceas/metabolismo , Zinco/metabolismo , Fósforo/metabolismo , Fitoplâncton/metabolismo , Metais/metabolismo
5.
Oxid Med Cell Longev ; 2021: 6673343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239694

RESUMO

The oxysterol 27-hydroxycholesterol (27HC) is the first identified endogenous selective estrogen receptor modulator (SERM), which like endogenous estrogen 17ß-estradiol (E2) induces the proliferation of estrogen receptor- (ER-) positive breast cancer cells in vitro. However, 27HC differs from E2 in that it shows adverse effects in the nervous system. Our previous study confirmed that 27HC could induce neural senescence by activating phosphorylated signal transducer and activator of transcription, which E2 could not. The purpose of the present study is to investigate whether STAT3 acetylation was involved in 27HC-induced neural senescence. Microglia (BV2 cells) and rat pheochromocytoma cells (PC12 cells) were used in vitro to explore the effect of resveratrol (REV) on 27HC-induced neural senescence. Senescence-associated ß-galactosidase (SA-ß-Gal) staining was performed using an SA-ß-Gal Staining Kit in cells and zebrafish larvae. Zebrafish were used in vivo to assess the effect of 27HC on locomotor behavior and aging. We found that 27HC could induce senescence in neural cells, and REV, which has been employed as a Sirtuin-1 (SIRT1) agonist, could attenuate 27HC-induced senescence by inhibiting STAT3 signaling via SIRT1. Moreover, in the zebrafish model, REV attenuated 27HC-induced locomotor behavior disorder and aging in the spinal cord of zebrafish larvae, which was also associated with the activation of SIRT1-mediated STAT3 signaling. Our findings unveiled a novel mechanism by which REV alleviates 27HC-induced senescence in neural cells and affects zebrafish locomotor behavior by activating SIRT1-mediated STAT3 signaling.


Assuntos
Antioxidantes/uso terapêutico , Senescência Celular/efeitos dos fármacos , Hidroxicolesteróis/efeitos adversos , Resveratrol/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Antioxidantes/farmacologia , Humanos , Resveratrol/farmacologia , Transdução de Sinais , Transfecção , Peixe-Zebra
6.
Bioprocess Biosyst Eng ; 44(7): 1491-1499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710454

RESUMO

The red alga Porphyridium purpureum has been known to produce polyunsaturated fatty acids, especially arachidonic acid (ARA), under stressful conditions. However, there is no consistent conclusion about the response of ARA in this alga to nitrogen (N) stress. Also, no research has been done to clearly elucidate the underlying molecular mechanisms of N stress. In this work, P. purpureum CoE1 was cultivated under nitrogen limitation conditions and the putative Δ5-desaturase related gene FADSD5 was isolated. The results showed that the fatty acids in P. purpureum CoE1 were significantly higher in the N limited cultures (54.3 mg g-1) than in the N-replete cultures (45.3 mg g-1) at the 18th day (t-test, p < 0.001), which was attributed to the upregulated abundance of the putative Δ5-desaturase related protein, Δ5-Des. The study also indicated that the expression of the putative Δ5-desaturase related gene, FADSD5, increased with cell growth, demonstrating considerable potentials for ARA biosynthesis in P. purpureum CoE1. These results might guide the direction in illuminating the biosynthetic pathway of fatty acids with molecular evidence and enable genetic modifications of P. purpureum CoE1 for enhancing the ARA accumulation.


Assuntos
Ácido Araquidônico/química , Nitrogênio/química , Porphyridium/metabolismo , Biomassa , Biotecnologia/métodos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/química , Microbiologia Industrial/métodos , Modelos Lineares , Análise de Componente Principal , Regulação para Cima
7.
Cell Biol Toxicol ; 37(4): 515-529, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33131013

RESUMO

Endothelial-mesenchymal transition (EndMT) is the transformation of endothelial cell morphology to mesenchymal cell morphology, accompanied by decline of endothelial function and enhancement of mesenchymal function, which promotes tumor progression and tumor cell invasion and metastasis. 27-Hydroxycholesterol (27-HC) is a cholesterol metabolite, which has a high content in human blood. 27-HC promotes breast cancer cell proliferation, invasion, and migration. We previously showed that 27-HC promotes EndMT; however, the underlying mechanism still needs to be further explored. We studied the role of the 14-3-3η/GSK-3ß/ß-catenin complex in EndMT. Our results show that 27-HC induces oxidative stress in HUVECs and activates the p38 signaling pathway, thereby inhibiting the binding of 14-3-3η/GSK-3ß/ß-catenin, promoting the increase of free ß-catenin and nuclear translocation, and finally inducing EndMT. Treatment with N-acetylcysteine (NAC) blocked 27-HC-induced ROS generation and p38 signaling pathway activation, prevented ß-catenin from release from binding, and inhibited EndMT. Blocking ROS production or p38 signaling or knocking down 14-3-3η inhibited 27-HC-induced EndMT and inhibited breast cancer cell metastasis. These findings indicate 14-3-3η is necessary for interactions between the p38 kinase and the GSK-3ß/ß-catenin complex and serves as an adaptor to transmit the upstream kinase signal to the downstream signal, thereby promoting EndMT and breast cancer cell migration.


Assuntos
Neoplasias da Mama , beta Catenina , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Hidroxicolesteróis , beta Catenina/genética
8.
Cancer Biol Med ; 17(1): 88-100, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296578

RESUMO

Objective: The endothelial to mesenchymal transition (EndMT) plays a major role in cancer metastasis by regulating the complexity of the tumor microenvironment (TME). Here, we investigated whether 27-hydroxycholesterol (27HC) induces EndMT in endothelial cells (ECs). Methods: EndMT markers in the human microvascular endothelial cell-1 (HMEC-1) cell line and human umbilical vein endothelial cells (HUVECs) stimulated with 27HC were evaluated with Western blot. Epithelial to mesenchymal transition (EMT) markers in breast cancer (BC) cells cultured in conditioned medium were investigated with quantitative real time polymerase chain reaction (qRT-PCR). The MMP-2 and MMP-9 mRNA expression and activity were detected with qRT-PCR and gelatin zymography assays, respectively. The effect of activated STAT3 on 27HC-induced EndMT was validated by Western blot, immunofluorescence staining, and cell transfection assays. The migration ability of BC cells was evaluated with Transwell assays. Results: We found that 27HC induced EndMT in HMEC-1 and HUVECs, and 27HC-induced EndMT facilitated EMT and BC cell migration. The 27HC-induced EMT of BC cells also promoted EndMT and HUVEC migration. Investigation of the underlying molecular mechanisms revealed that STAT3 knockdown repressed EndMT in HUVECs as well as migration in BC cells induced with 27HC. In addition, C646 and resveratrol, inhibitors of STAT3 acetylation, repressed the expression of Ac-STAT3, p-STAT3, and EndMT markers in HUVECs exposed to 27HC; these HUVECs in turn attenuated the migration ability of BC cells in 27HC-induced EndMT. Conclusions: Cross-talk between 27HC-induced EndMT and EMT was observed in the TME. Moreover, activation of STAT3 signaling was found to be involved in 27HC-induced EndMT.


Assuntos
Neoplasias da Mama/patologia , Endotélio Vascular/patologia , Transição Epitelial-Mesenquimal , Hidroxicolesteróis/metabolismo , Fator de Transcrição STAT3/metabolismo , Acetilação/efeitos dos fármacos , Benzoatos/farmacologia , Neoplasias da Mama/irrigação sanguínea , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Nitrobenzenos/farmacologia , Pirazolonas/farmacologia , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
9.
Free Radic Res ; 54(2-3): 126-136, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31933392

RESUMO

Breast cancer is an important and common tumour among women worldwide. We previously showed that 27-hydroxycholesterol (27HC) promoted the invasion and migration of breast cancer cells and activated signal transducer and activator of transcription 3 (STAT-3) signalling through reactive oxygen species (ROS). However, the regulation of STAT-3 signalling by ROS needs to be further explored. Here, we showed that 27HC caused the accumulation of cellular ROS, which upregulated matrix metalloproteinase 9 (MMP9) and increased the invasive ability of MCF7 and T47D cells. 27HC decreased the protein and mRNA levels of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) in a time- and dose-dependent manner in MCF7 and T47D cells. RECK downregulation was mediated by 27HC-induced DNA methylation via ROS in MCF7 cells. RECK knockdown increased the activity and mRNA levels of MMP9, and promoted the invasion of MCF7 cells. We also found RECK knockdown upregulated the level of p-STAT-3 in MCF7 cells. Furthermore, overexpression of RECK attenuated 27HC-induced invasion in MCF7 cells. RECK overexpression also inhibited p-STAT-3 upregulation induced by 27HC. Collectively, the results showed that DNA methylation induced by 27HC via ROS downregulated RECK, thereby activating the STAT-3 signalling pathway. RECK could serve as a novel target mediating the effect of 27HC on breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Ligadas por GPI/metabolismo , Hidroxicolesteróis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Invasividade Neoplásica , Transfecção
10.
Bioprocess Biosyst Eng ; 43(2): 357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31903503

RESUMO

The original version of the article unfortunately contained an error in Microalgae strain and culture medium section. Below is the corrected version.

11.
Bioprocess Biosyst Eng ; 43(2): 347-355, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31606754

RESUMO

Porphyridium purpureum is a rich source for producing phycoerythrin (PE); however, the PE content is greatly affected by culture conditions. Researchers have aimed to optimize the cultivation of P. purpureum for accumulation of PE. When traditional optimized culture conditions were used to cultivate P. purpureum, high PE contents were not usually achieved. In this study, an induced cultivation pattern was applied to P. purpureum for PE biosynthesis (i.e., an incremental approach by altering temperatures, light intensities, and nitrate concentrations). Results revealed that the induced pattern greatly improved the PE biosynthesis. The optimized PE content of 229 mg/L was achieved on the 12th cultivation day, which was a maximum PE content within one cultivation period and accounted for approximately 3.05% of the dry biomass. The induced cultivation pattern was highly suitable for PE synthesis in P. purpureum, which provided an important reference value to the large-scale production of PE.


Assuntos
Biomassa , Luz , Ficoeritrina , Porphyridium/crescimento & desenvolvimento , Ficoeritrina/biossíntese , Ficoeritrina/química , Ficoeritrina/isolamento & purificação
12.
Exp Cell Res ; 386(2): 111739, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759055

RESUMO

Chemo-resistance to conventional therapy is a major barrier requiring further investigation in hepatocellular carcinoma (HCC). Cancer stem like cells (CSCs) contribute to the tumorigenicity, progression, and chemo-resistance of malignancies. Studies have implicated the anti-cancer effects of arsenic trioxide (ATO) and have explored the underlying mechanisms. However, whether ATO might reverse chemo-resistance by inhibiting the CSC like properties remains under investigation. Here, we explored the potential of ATO in chemotherapy in constructed multiple drug resistant (MDR) liver cancer cells. ATO re-sensitized the MDR Bel-7402 cells (BelMDR) cells to chemotherapeutic drugs, an effect mediated by the inhibition of NF-κB pathway and CSCs properties. For the molecular mechanisms, via inducing the DNA de-methylation, ATO activated the microRNA-148a (miR-148a), leading to the repression of NF-κB pathway by targeting the 3'-UTR of p65. In summary, epigenetic regulation of miR-148a by ATO is an important mechanism in drug resistance that decreases the expression of NF-κB and hence represses CSC like phenotype. These findings may suggest a novel mechanism for HCC treatment.


Assuntos
Antineoplásicos/farmacologia , Trióxido de Arsênio/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição RelA/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Fluoruracila/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , MicroRNAs/metabolismo , Células-Tronco Neoplásicas , Oxaliplatina/farmacologia , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
13.
Cell Biol Toxicol ; 35(5): 445-456, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30941654

RESUMO

Enhancer of zeste homolog 2 (EZH2) is frequently overexpressed in breast cancer and plays an important role in maintaining the cell proliferative capacity. However, the mechanisms underlying the transcriptional regulation of EZH2 in estrogen receptor (ER)-positive breast cancer cells remain unclear. The antitumor effects of resveratrol have been reported. However, whether EZH2 was involved in these effects needs further exploration. Here, we showed that EZH2 is required for estrogen-induced cell proliferation in ER-positive breast cancer. Exposure to 17ß-estradiol (E2) upregulated EZH2 via ERα signaling, and this effect was blocked by U0126, a MEK inhibiter. Resveratrol inhibited the proliferation and colony formation in ER-positive breast cancer cells and downregulated EZH2 through inhibition of phospho-ERK1/2. These findings indicated that ERK1/2 and ER signaling-mediated EZH2 upregulation is crucial for the proliferation of ER-positive breast cancer cells. The suppression of EZH2 expression by ERK1/2 dephosphorylation is important for the antiproliferative activities of resveratrol against ER-positive breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Resveratrol/uso terapêutico , Butadienos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Resveratrol/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Int J Syst Evol Microbiol ; 69(5): 1472-1476, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30888313

RESUMO

A Gram-stain-negative, short rod-shaped, non-motile, catalase- and oxidase-positive, aerobic bacterium, designated GY0581T, was isolated from marine sediment sampled from the Western Pacific Ocean. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain GY0581T belonged to the genus Paracoccus and had the highest levels of sequence similarity to Paracoccus sediminis JCM 18467T (98.2 %). Levels of similarity between strain GY0581T and other Paracoccus species were lower than 97.0 %. The average nucleotide identity and the DNA-DNA hybridization values between strain GY0581T and P. sediminis JCM 18467T were 83.9 and 27 %, respectively, which are below the respective thresholds for species differentiation. The major cellular fatty acid was C18 : 1ω7c (79.5 %). The only isoprenoid quinone was Q-10. The polar lipid pattern indicated the presence of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, three unidentified phospholipids, three unidentified aminolipids, one unidentified glycolipid and two unidentified lipids. The DNA G+C content of strain GY0581T was 65.6 mol%. On the basis of polyphasic characterization, it is concluded that strain GY0581T represents a novel species of the genus Paracoccus, for which the name Paracoccus subflavus sp. nov. is proposed. The type strain is GY0581T (=KCTC 42710T=MCCC 1A10575T).


Assuntos
Sedimentos Geológicos/microbiologia , Paracoccus/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Oceano Pacífico , Paracoccus/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
15.
Chin J Nat Med ; 16(11): 838-845, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30502765

RESUMO

Postmenopausal women, who have reduced circulating estrogen levels, are more prone to develop obesity and related metabolic diseases than premenopausal women. The absence of safe and effective treatments for postmenopausal obesity has changed the focus to natural products as alternative remedies. Total salvianolic acids (TSA) are the major water-soluble ingredients of Danshen. Salvianolic acid (SA) is the major constituent of the TSA. Salvianolic acids, including TSA and SA, are widely used in traditional Chinese medicine. In the present study, ovariectomized rats and LO2 cells were used to study the effects of salvianolic acids on body weight gain and hepatic steatosis. Salvianolic acids reduced ovariectomy (OVX)-induced body weight gain, attenuated the expressions of hepatic lipogenic genes, such as sterol regulatory element binding protein (SREBP)1, fatty acid synthase (FAS), and stearoyl-CoA desaturase (SCD)1, and decreased the liver triglyceride (TG) and total cholesterol (TC). For the molecular mechanisms, OVX and high glucose-induced phosphorylation of signal transducer and activator of transcription (STAT)-3 was inhibited by salvianolic acids treatment. In LO2 cells, inhibition of STAT-3 by siRNA attenuated the increased expression of SREBP1 and TG induced by high glucose. Salvianolic acids reduced the upregulation of SREBP1 and TG induced by high glucose in LO2 cells. In conclusion, these findings illustrated that salvianolic acids markedly alleviated the lipid metabolism disorders and protected against the postmenopausal obesity. The underlying mechanism was probably associated with the regulation of STAT-3 signaling.


Assuntos
Alcenos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Obesidade/tratamento farmacológico , Polifenóis/administração & dosagem , Pós-Menopausa/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Feminino , Humanos , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , Ovariectomia , Pós-Menopausa/genética , Pós-Menopausa/metabolismo , Ratos , Fator de Transcrição STAT3/genética , Salvia miltiorrhiza/química , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/metabolismo
16.
Biotechnol Biofuels ; 11: 273, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305846

RESUMO

BACKGROUND: Organic carbon sources have been reported to simultaneously increase the growth and lipid accumulation in microalgae. However, there have been no studies of the mixotrophic growth of Porphyridium purpureum in organic carbon media. In this study, three organic carbon sources, glucose, sodium acetate, and glycerol were used as substrates for the mixotrophic growth of P. purpureum. Moreover, a novel trait-based approach combined with Generalized Additive Modeling was conducted to determine the dosage of each organic carbon source that optimized the concentration of cell biomass or fatty acid. RESULTS: A 0.50% (w/v) dosage of glucose was optimum for the enhancement of the cell growth of P. purpureum, whereas sodium acetate performed well in enhancing cell growth, arachidonic acid (ARA) and eicosapentaenoic acid (EPA) content, and glycerol was characterized by its best performance in promoting both cell growth and ARA/EPA ratio. The optimum dosages of sodium acetate and glycerol for the ARA concentration were 0.25% (w/v) and 0.38% (v/v), respectively. An ARA concentration of 211.47 mg L-1 was obtained at the optimum dosage of glycerol, which is the highest ever reported. CONCLUSIONS: The results suggested that a comprehensive consider of several traits offers an effective strategy to select an optimum dosage for economic and safe microalgae cultivation. This study represents the first attempt of mixotrophic growth of P. purpureum and proved that both biomass and ARA accumulation could be enhanced under supplements of organic carbon sources, which brightens the commercial cultivation of microalgae for ARA production.

17.
J Nutr Biochem ; 61: 17-23, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30179725

RESUMO

Postmenopausal women have a decline in circulating estrogen levels and are more prone to obesity and its related metabolic diseases than premenopausal women are. The absence of safe and effective conventional treatments for postmenopausal obesity has changed the focus to natural products as alternative remedies. Here, ovariectomized rats and LO2 cells were used to study the molecular basis of the effect of dietary phytoestrogens on body weight gain and hepatic steatosis. Dietary phytoestrogens can inhibit ovariectomy (OVX)-induced body weight gain, blood glucose concentration, expression of hepatic lipogenic genes, such as sterol regulatory element binding protein (SREBP)1, acetyl-CoA carboxylase (ACC)1, fatty acid synthase (FAS), and stearoyl-CoA desaturase (SCD)1, and decrease liver triglyceride (TG) content, but later estradiol withdrawal increased expression of SREBP1. Histological analysis of liver showed that dietary phytoestrogens improved OVX-induced morphological abnormalities. OVX and high glucose-induced phosphorylation of signal transducer and activator of transcription (STAT)-3 were inhibited by phytoestrogens treatment. In LO2 cells, inhibition of STAT-3 by siRNA attenuated the increased TG content and expression of SREBP1 induced by high glucose. Phytoestrogens reduced the upregulation of SREBP1 and TG induced by high glucose in LO2 cells. In conclusion, these findings illustrated that dietary phytoestrogens markedly alleviated the derangement of lipid metabolism. The underlying mechanism is probably associated with regulating STAT-3/SREBP1 signaling.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fitoestrógenos/farmacologia , Fator de Transcrição STAT3/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Aumento de Peso/efeitos dos fármacos , Animais , Linhagem Celular , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Ovariectomia , Ratos Sprague-Dawley , Aumento de Peso/fisiologia
18.
Bioprocess Biosyst Eng ; 40(12): 1763-1773, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28836004

RESUMO

The present study attempts to cultivate Porphyridium purpureum under different scale-up conditions for further development and commercialization of microalgae-derived PUFAs such as ARA and EPA. Different temperatures (25, 30, and 35 °C) and light intensities (70, 165, and 280 µmol/m2s) were applied to the 50 L pilot-scale cultivation of P. purpureum in ASW. The cultivation under the light intensity of 280 µmol/m2s at 35 °C obtained biomass concentration up to 9.52 g/L, total fatty acid content to 56.82 mg/g, and ARA content to 22.29 mg/g. While the maximum EPA content of 7.00 mg/g was achieved under the light intensity of 280 µmol/m2s at 25 °C and the highest ratio of UFAs to TFAs of 74.66% was also obtained in this trial. Both biomass concentration and TFAs content were improved by increasing light intensity and temperature. Moreover, the ratio of ARA to EPA was enhanced by increasing cultivation temperature under the light intensity of 280 µmol/m2s. In contrast with flask culture, the conversion of linoleic acid (C18:2) to ARA was enhanced in scale-up culture, leading to more ARA content. Phosphate limitation enhanced the synthesis of lipid and LPUFAs. Moreover, the biomass concentration and biosynthesis of palmitic acid were preferred by sufficient C (NaHCO3).


Assuntos
Ácido Araquidônico/metabolismo , Microalgas/metabolismo , Porphyridium/metabolismo , Biomassa , Luz , Microalgas/crescimento & desenvolvimento , Fosfatos/metabolismo , Porphyridium/crescimento & desenvolvimento , Temperatura
19.
Biotechnol Biofuels ; 10: 168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670342

RESUMO

BACKGROUND: The microalga Porphyridium purpureum within Rhodophyta abundantly produces several valuable proteins, polysaccharides, pigments and long-chain polyunsaturated fatty acid; it is especially effective in accumulating arachidonic acid (ARA). However, this high ARA yield is always achieved in conditions unfavourable for cell growth. In this study, we present a method for obtaining desirable ARA levels from P. purpureum while simultaneously promoting cell growth using appropriate concentrations of the growth hormone 5-Aminolevulinic acid (5-ALA). RESULTS: Both the biomass and the ARA content of P. purpureum were enhanced by stimulation with 20 mg/L 5-ALA, leading to an optimal ARA yield of 170.32 mg/L-a 70.82% increase compared with control conditions. This ARA yield is the highest ever reported for microalgae. Based on variations in the fatty acid composition, total lipids, total proteins, total carbohydrates and pigment content during the cultivation period, we propose that the accumulation of ARA stimulated by 5-ALA occurs at the expense of other UFAs and total proteins, which may be related to decreased zeaxanthin. Lipidomic analysis revealed that triacylglycerols (TAGs) accounted for 47.5 ± 3.6% of all detected lipids, followed by phosphatidylglycerol (PG) and digalactosyldiacylglycerol (DGDG). As the levels of the most abundant TAGs increased under 5-ALA promotion and because 78.1 ± 3.4% (by weight) of detected TAG-branched chains contained ARA, the increase of ARA was mainly caused by TAG accumulation. CONCLUSIONS: This work demonstrated a simple and effective strategy to promote both biomass and ARA yield in P. purpureum by introducing a small amount of 5-ALA. These results are helpful for understanding the microalgae metabolic pathways affected by phytohormones and for guiding the development of bioproducts from microalgae.

20.
Toxicol In Vitro ; 45(Pt 1): 10-18, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28739487

RESUMO

The oxysterol 27-hydroxycholesterol (27HC) is a selective estrogen receptor modulator (SERMs), which like endogenous estrogen 17ß-estradiol (E2) induces the proliferation of ER-positive breast cancer cells in vitro. Interestingly, the observation that 27HC induces adverse effects in neural system, distinguishing it from E2. It has been suggested that high levels of circulating cholesterol increase the entry of 27HC into the brain, which may induce learning and memory impairment. Based on this evidence, 27HC may be associated with neurodegenerative processes and interrupted cholesterol homeostasis in the brain. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that 27HC induced apparent cellular senescence in nerve cells. Senescence-associated ß-galactosidase (SA-ß-Gal) assay revealed that 27HC induced senescence in both BV2 cells and PC12 cells. Furthermore, we demonstrated that 27HC promoted the accumulation of cellular reactive oxygen species (ROS) in nerve cells and subsequently activation of IL-6/STAT3 signaling pathway. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly blocked 27HC-induced ROS production and activation of IL-6/STAT3 signaling pathway. Either blocking the generation of ROS or inhibition of IL-6/STAT3 both attenuated 27HC-induced cellular senescence. In sum, these findings not only suggested a mechanism whereby 27HC induced cellular senescence in nerve cells, but also helped to recognize the 27HC as a novel harmful factor in neurodegenerative diseases.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Hidroxicolesteróis/toxicidade , Interleucina-6/metabolismo , Microglia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxicolesteróis/administração & dosagem , Camundongos , Feocromocitoma , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA