Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 372, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627613

RESUMO

BACKGROUND: Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio's SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. RESULTS: We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA's role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. CONCLUSIONS: This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding.


Assuntos
Dalbergia , RNA Longo não Codificante , Madeira/genética , Madeira/metabolismo , Dalbergia/genética , Dalbergia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , Processamento Alternativo , Isoformas de Proteínas/genética , Terpenos/metabolismo
2.
Front Plant Sci ; 14: 1068796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645463

RESUMO

Introduction: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that play an important role in wood formation in plants. However, the significance of the link between miRNAs and their target transcripts in wood formation remains unclear in rubber tree (Hevea brasiliensis). Methods: In this study, we induced the formation of reaction wood by artificially bending rubber trees for 300 days and performed small RNA sequencing and transcriptome deep sequencing (RNA-seq) to describe the complement of miRNAs and their targets contributing to this process. Results and discussion: We identified 5, 11, and 2 differentially abundant miRNAs in normal wood (NW) compared to tension wood (TW), in NW relative to opposite wood (OW), and between TW and OW, respectively. We also identified 12 novel miRNAs and 39 potential miRNA-mRNA pairs with different accumulation patterns in NW, TW, and OW. We noticed that many miRNAs targeted transcription factor genes, which were enriched in KEGG pathways associated with phenylpropanoid biosynthesis, phenylalanine metabolism, and pyruvate metabolism. Thus, miRNA-TF-mRNA network involved in wood formation via tension wood model were constructed. We validated the differential accumulation of miRNAs and their targets by RT-qPCR analysis and overexpressed miRNA in Nicotiana benthamiana with its potential target gene. These results will provide a reference for a deep exploration of growth and development in rubber tree.

3.
Front Genet ; 12: 763841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777481

RESUMO

Given the importance of wood in many industrial applications, much research has focused on wood formation, especially lignin biosynthesis. However, the mechanisms governing the regulation of lignin biosynthesis in the rubber tree (Hevea brasiliensis) remain to be elucidated. Here, we gained insight into the mechanisms of rubber tree lignin biosynthesis using reaction wood (wood with abnormal tissue structure induced by gravity or artificial mechanical treatment) as an experimental model. We performed transcriptome analysis of rubber tree mature xylem from tension wood (TW), opposite wood (OW), and normal wood (NW) using RNA sequencing (RNA-seq). A total of 214, 1,280, and 32 differentially expressed genes (DEGs) were identified in TW vs. NW, OW vs. NW, and TW vs. OW, respectively. GO and KEGG enrichment analysis of DEGs from different comparison groups showed that zeatin biosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interaction pathways may play important roles in reaction wood formation. Sixteen transcripts involved in phenylpropanoid biosynthesis and 129 transcripts encoding transcription factors (TFs) were used to construct a TF-gene regulatory network for rubber tree lignin biosynthesis. Among them, MYB, C2H2, and NAC TFs could regulate all the DEGs involved in phenylpropanoid biosynthesis. Overall, this study identified candidate genes and TFs likely involved in phenylpropanoid biosynthesis and provides novel insights into the mechanisms regulating rubber tree lignin biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA