Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 257: 110032, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852839

RESUMO

The full mechanism of action of propofol, a commonly administered intravenous anesthetic drug in clinical practice, remains elusive. The focus of this study was the role of GABAergic neurons which are the main neuron group in the ventral pallidum (VP) closely associated with anesthetic effects in propofol anesthesia. The activity of VP GABAergic neurons following propofol anesthesia in Vgat-Cre mice was observed via detecting c-Fos immunoreactivity by immunofluorescence and western blotting. Subsequently, chemogenetic techniques were employed in Vgat-Cre mice to regulate the activity of VP GABAergic neurons. The role of VP GABAergic neurons in generating the effects of general anesthesia induced by intravenous propofol was further explored through behavioral tests of the righting reflex. The results revealed that c-Fos expression in VP GABAergic neurons in Vgat-Cre mice dramatically decreased after propofol injection. Further studies demonstrated that chemogenetic activation of VP GABAergic neurons during propofol anesthesia shortened the duration of anesthesia and promoted wakefulness. Conversely, the inhibition of VP GABAergic neurons extended the duration of anesthesia and facilitated the effects of anesthesia. The results obtained in this study suggested that regulating the activity of GABAergic neurons in the ventral pallidum altered the effect of propofol on general anesthesia.

2.
Ageing Res Rev ; 99: 102363, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838785

RESUMO

The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.

3.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783169

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Região CA1 Hipocampal , Regulação para Baixo , Plasticidade Neuronal , Neurônios , Complicações Cognitivas Pós-Operatórias , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Neurônios/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Região CA1 Hipocampal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Potenciação de Longa Duração , Ácido Glutâmico/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia
4.
ACS Nano ; 18(14): 10324-10340, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547369

RESUMO

A major challenge in using nanocarriers for intracellular drug delivery is their restricted capacity to escape from endosomes into the cytosol. Here, we significantly enhance the drug delivery efficiency by accurately predicting and regulating the transition pH (pH0) of peptides to modulate their endosomal escape capability. Moreover, by inverting the chirality of the peptide carriers, we could further enhance their ability to deliver nucleic acid drugs as well as antitumor drugs. The resulting peptide carriers exhibit versatility in transfecting various cell types with a high efficiency of up to 90% by using siRNA, pDNA, and mRNA. In vivo antitumor experiments demonstrate a tumor growth inhibition of 83.4% using the peptide. This research offers a potent method for the rapid development of peptide vectors with exceptional transfection efficiencies for diverse pathophysiological indications.


Assuntos
Sistemas de Liberação de Medicamentos , Endossomos , Preparações Farmacêuticas , Endossomos/metabolismo , Peptídeos/metabolismo , Concentração de Íons de Hidrogênio
5.
CNS Neurosci Ther ; 30(2): e14604, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332635

RESUMO

AIM: Repeated exposure to ketamine during the neonatal period in mice leads to cognitive impairments in adulthood. These impairments are likely caused by synaptic plasticity and excitability damage. We investigated the precise role of brain-derived neurotrophic factor (BDNF) in the cognitive impairments induced by repeated ketamine exposure during the neonatal period. METHODS: We evaluated the cognitive function of mice using the Morris water maze test and novel object recognition test. Western blotting and immunofluorescence were used to detect the protein levels of BDNF. Western blotting, Golgi-Cox staining, transmission electron microscopy, and long-term potentiation (LTP) recordings were used to assess synaptic plasticity in the hippocampus. The excitability of neurons was evaluated using c-Fos. In the intervention experiment, pAdeno-CaMKIIα-BDNF-mNeuronGreen was injected into the hippocampal CA1 region of mice to increase the level of BDNF. The excitability of neurons was enhanced using a chemogenetic approach. RESULTS: Our findings suggest that cognitive impairments in mice repeatedly exposed to ketamine during the neonatal period are associated with downregulated BDNF protein level, synaptic plasticity damage, and decreased excitability of glutamatergic neurons in the hippocampal CA1 region. Furthermore, the specific upregulation of BDNF in glutamatergic neurons of the hippocampal CA1 region and the enhancement of excitability can improve impaired synaptic plasticity and cognitive function in mice. CONCLUSION: BDNF downregulation mediates synaptic plasticity and excitability damage, leading to cognitive impairments in adulthood following repeated ketamine exposure during the neonatal period.


Assuntos
Disfunção Cognitiva , Ketamina , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ketamina/toxicidade , Regulação para Baixo , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Disfunção Cognitiva/metabolismo
6.
J Invertebr Pathol ; 203: 108072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341022

RESUMO

Pathogenic microorganism of silkworm are important factors that threaten the high-quality development of sericulture. Among them, Bombyx mori nucleopolyhedrovirus (BmNPV) caused diseases often lead to frequent outbreaks and high mortality, resulting in huge losses to sericultural industry. Current molecular detection methods for BmNPV require expensive equipment and sikilled technical personnel. As a result, the most commonly detection method for silkworm egg production enterprises involves observing the presence of polyhedra under a microscope. However, this method has low accuracy and sensitivity. There is an urgent need to develop a new detection technology with high sensitivity, high specificity, and applicability for silkworm farms, silkworm egg production enterprises and quarantine departments. In this study, we successfully established the CRISPR/Cas13a BmNPV visualized detection technology by combining Recombinase Polymerase Amplification (RPA) technology and CRISPR/Cas13a system. This technology is based on microplate lateral, flow test strips and portable fluorescence detector. The detection sensitivity can reach up to 1 copies/µL for positive standard plasmid and 1 fg/µL for BmNPV genome in 30-45 min, demonstrating high sensitivity. By detecting silkworm tissues infected with different pathogens, we determined that CRISPR/Cas13a detection technology has good specificity. In summary, the newly established nucleic acid detection technology for BmNPV is characterized by high sensitivity, high specificity, low cost and convenience for visualization. It can be applied in field detection and silkworm egg quality monitory system.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Nucleopoliedrovírus/genética , Sensibilidade e Especificidade
7.
J Mater Chem B ; 11(37): 8974-8984, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37700728

RESUMO

The tumor microenvironment is a very complex and dynamic ecosystem. Although a variety of pH-responsive peptides have been reported to deliver nucleic acid drugs for cancer treatment, these responses typically only target the acidic microenvironment of the tumor or the lysosome, and the carrier suffers from issues such as low transfection efficiency and poor lysosomal escape within the cell. To address this problem, we have developed an ultra pH-responsive peptide nanocarrier that can efficiently deliver siRNA, pDNA, and mRNA into cancer cells by performing progressive dynamic assembly in response to pH changes in the acidic tumor microenvironment (pH 6.5-6.8) and the acidic intracellular lysosomal environment (pH 5.0-6.0). The maximum transfection efficiency was 87.1% for pDNA and 74.9% for mRNA, which is higher than that of peptide-based nanocarrier reported to date. In addition, the targeting sequence on the surface allows the peptide@siRNA complex to efficiently enter cancer cells, causing 96% of cancer cell mortality. The carrier has high biocompatibility and low cytotoxicity, making it highly promising for application in immunotherapy and gene therapy of tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Genes Neoplásicos , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Peptídeos , RNA Mensageiro , RNA Interferente Pequeno/farmacologia
8.
Mol Neurobiol ; 60(10): 5789-5804, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37349621

RESUMO

The mechanism underlying the hypnosis effect of propofol is still not fully understood. In essence, the nucleus accumbens (NAc) is crucial for regulating wakefulness and may be directly engaged in the principle of general anesthesia. However, the role of NAc in the process of propofol-induced anesthesia is still unknown. We used immunofluorescence, western blotting, and patch-clamp to access the activities of NAc GABAergic neurons during propofol anesthesia, and then we utilized chemogenetic and optogenetic methods to explore the role of NAc GABAergic neurons in regulating propofol-induced general anesthesia states. Moreover, we also conducted behavioral tests to analyze anesthetic induction and emergence. We found out that c-Fos expression was considerably dropped in NAc GABAergic neurons after propofol injection. Meanwhile, patch-clamp recording of brain slices showed that firing frequency induced by step currents in NAc GABAergic neurons significantly decreased after propofol perfusion. Notably, chemically selective stimulation of NAc GABAergic neurons during propofol anesthesia lowered propofol sensitivity, prolonged the induction of propofol anesthesia, and facilitated recovery; the inhibition of NAc GABAergic neurons exerted opposite effects. Furthermore, optogenetic activation of NAc GABAergic neurons promoted emergence whereas the result of optogenetic inhibition was the opposite. Our results demonstrate that NAc GABAergic neurons modulate propofol anesthesia induction and emergence.


Assuntos
Propofol , Propofol/farmacologia , Núcleo Accumbens , Neurônios GABAérgicos , Hipnóticos e Sedativos/farmacologia , Anestesia Geral
9.
Front Mol Neurosci ; 15: 877263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571375

RESUMO

It has been widely demonstrated by numerous preclinical studies and clinical trials that the neonates receiving repeated or long-time general anesthesia (GA) could develop prolonged cognitive dysfunction. However, the definite mechanism remains largely unknown. Epigenetics, which is defined as heritable alterations in gene expression that are not a result of alteration of DNA sequence, includes DNA methylation, histone post-translational modifications, non-coding RNAs (ncRNAs), and RNA methylation. In recent years, the role of epigenetic modifications in neonatal GA-induced neurotoxicity has been widely explored and reported. In this review, we discuss and conclude the epigenetic mechanisms involving in the process of neonatal anesthesia-induced cognitive dysfunction. Also, we analyze the wide prospects of epigenetics in this field and its possibility to work as treatment target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA