Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 130: 109658, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663564

RESUMO

Low temperature is a common stress source for the poultry industry in the north of China. However, the low energy consuming and economical way to reduce the negative effects from cold stress is still limited. Therefore, the aim of this study was to investigate the effect of rutin on intestinal barrier in mice under low temperature. The cold stress model was established at 4°C for 3 h each day and the experiment lasted for 21 days. Forty Balb/c mice were randomly divided into four treatments: CON, normal temperature with the basal diet; RUT, normal temperature with the basal diet +150 mg/kg body weight (BW) of rutin; CS, mice under cold stress with basal diet; CR, 150 mg/kg of BW rutin under cold stress. Rutin supplementation significantly increased the ileum villus-to-crypt ratio compared with these non-supplemented treatments. Rutin attenuated the hypothermia induced morphological damage in the ileum. In addition, rutin improved the antioxidant capacity of mice under cold stress. Rutin supplementation significantly increased the trypsin activity and inhibited the lipase in cold stressed mice. Rutin supplementation significantly inhibited the production of inflammatory factors induced by cold stress. Rutin induced the inhibition of TLR4 and NF-кB, thereby reducing the expression of inflammation-related genes. In addition, rutin improved the reduction of the intestinal claudin-1 and occludin expression in those mice in the cold stress (P < .05) and improved the intestinal ZO-1 expression in cold stressed mice. Finally, rutin alleviated the dysregulation of intestinal microflora in the mice under cold stress.

2.
Animals (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338051

RESUMO

This experiment aimed to investigate the mitigating effect of CUR on the growth performance and liver and intestinal health of broilers fed AFB1-contaminated diets. In this study, 320 one-day-old healthy male Arbor Acres (AA) broilers were randomly divided into four groups, including the Control group (fed the basal diet), the AFB1 group (fed the AFB1-contaminated diet containing 1 mg/kg AFB1), the AFB1+CUR group (fed the AFB1-contaminated diet with 500 mg/kg CUR), and the CUR group (fed the basal diet containing 500 mg/kg CUR), with eight replicates of ten animals per group and a 28 d experimental period. In terms of the growth performance, the addition of 500 mg/kg CUR significantly improved AFB1-induced significant reductions in the final body weight on day 28 and mean daily gain (p < 0.05) and increased the ratio of the mean daily feed intake to mean daily weight gain in broilers (p < 0.05). In terms of liver health, significant improvements in liver histological lesions occurred in broilers in the AFB1+CUR group compared to the AFB1 group, with significantly higher glutathione peroxidase (GSH-Px), catalase (CAT), and total superoxide dismutase (T-SOD) activities (p < 0.05) and significantly higher levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap-1), heme oxygenase 1 (HO-1), and NAD(P)H quinone oxidoreductase 1 (NQO-1) gene expression (p < 0.05). In terms of intestinal health, CUR addition significantly increased the relative length of ileum (p < 0.05), significantly elevated the height of ileal villi (p < 0.05), significantly reduced D-Lactate (D-LA) and diamine oxidase (DAO) activities in broiler serum (p < 0.05), significantly increased GSH, CAT, and T-SOD activities in ileal tissues (p < 0.05), and significantly elevated the expression of Nrf2, HO-1, and NQO-1 genes (p < 0.05) compared to the AFB1 group. In conclusion, CUR showed a protective effect against damage to the liver and intestine caused by AFB1 in broilers through the Nrf2 signaling pathway, thereby improving the growth performance of broilers exposed to AFB1.

3.
Animals (Basel) ; 11(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34944363

RESUMO

The aim of this study was to explore the effect of dietary resveratrol on the growth performance and anti-inflammatory mechanism in ducks. A total of 280 one-day-old specific pathogen-free male ducklings (Anas platyrhynchos) with an average body weight of 35 ± 1 g were randomly divided into two dietary treatment groups with different supplementation levels of resveratrol for growth performance experiments: R0 and R400 (0 and, 400 mg kg-1 resveratrol, respectively). At the age of 28 days, 16 ducks were selected from each treatment group and divided into four subgroups for a 2 × 2 factorial pathological experiment: R0; R400; R0 + LPS; R400 + LPS, (0 mg kg-1 resveratrol, 400 mg kg-1 resveratrol, 0 mg kg-1 resveratrol, 400 mg kg-1 resveratrol + 5 mg lipopolysaccharide/kg body weight). The results showed that resveratrol significantly improved final body weight and average daily gain (p < 0.01) and alleviated the lipopolysaccharide-induced inflammatory response with a reduction in IL-1ß and IL-6 in the plasma and the liver (p < 0.05). Resveratrol improved mRNA levels of Nrf2 and HO-1 and decreased the mRNA levels of TLR4 and NF-κB in duck liver (p < 0.05). Dietary resveratrol can improve growth performance and reduce inflammation through the Nrf2/HO-1 and TLR4/NF-κB signaling pathways in duck.

4.
Foods ; 10(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34945637

RESUMO

Aflatoxin B1 (AFB1) is a mycotoxin widely distributed in animal feed and human food; it represents a serious threat to human and animal health. This study investigates the mechanism by which dietary curcumin protected liver against acute damage caused by AFB1 administration in ducks. One-day-old male ducks (n = 450) were randomly assigned to three groups, the control group, the AFB1 group, and the AFB1 + curcumin group; the first group were fed with basic diet, while the third group was fed basic diet containing 500 mg/kg curcumin. Ducks in the AFB1 group and AFB1 + curcumin group were challenged with AFB1 at the age of 70 days. The results show that AFB1 administration caused liver damage, increased CYP450 content and AFB1-DNA adducts in the liver, and induced oxidative stress and inflammatory response in the liver. Dietary curcumin significantly inhibited the generation of H2O2 and MDA in liver, activated the Nrf2-ARE signaling pathway, and suppressed the NLRP3-caspase-1 signaling pathway in the liver of ducks. Conclusively, curcumin in diet could protect duck liver against the generation of AFB1-DNA adducts, toxicity, oxidation stress and inflammatory response induced by AFB1 through regulating the NLRP3-caspase-1 signaling pathways, demonstrating that curcumin is a potential feed additive agent to reduce the serious harmful effects of AFB1 on duck breeding.

5.
Foods ; 10(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198498

RESUMO

Aflatoxin B1 (AFB1) is a stable toxic metabolite threatening health of human and animal and widely contaminated animal feed and human food. This present study aimed to investigate the effects of dietary curcumin on ileum injury in ducks induced by AFB1 administration and explore its underlying mechanisms. Ducks (N = 450, one-day-old male) with a similar weight were randomly assigned to 3 groups, containing the control group, AFB1 group (60 µg AFB1 kg-1 body weight) and curcumin (500 mg curcumin kg-1 diet) + AFB1 group. AFB1 administration markedly increased the ileum damage, AFB1-DNA adducts in the plasma and oxidation stress and inflammation. Adding curcumin into diet protected the ileum against morphology damage induced by AFB1 administration, decreased AFB1-DNA adducts in the plasma and eliminated oxidation stress and inflammation in the ileum of ducks. Anti-oxidation and anti-inflammatory effects of curcumin could protect the ileum against acute damage via activating Nrf2-ARE signaling pathway and inhibiting NF-κB signaling pathway. Conclusively, curcumin was a dietary anti-oxidation and anti-inflammation agent via activating Nrf2-ARE signaling pathway and inhibiting NF-κB signaling pathway to protect ileum against acute damage induced by AFB1 administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA