Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fundam Res ; 4(1): 147-157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933833

RESUMO

Metallic alloys with high strength and large ductility are required for extreme structural applications. However, the achievement of ultrahigh strength often results in a substantially decreased ductility. Here, we report a strategy to achieve the strength-ductility synergy by tailoring the alloy composition to control the local stacking fault energy (SFE) of the face-centered-cubic (fcc) matrix in an L12-strengthened superlattice alloy. As a proof of concept, based on the thermodynamic calculations, we developed a non-equiatomic CoCrNi2(Al0.2Nb0.2) alloy using phase separation to create a near-equiatomic low SFE disordered CoCrNi medium-entropy alloy matrix with in situ formed high-content coherent Ni3(Al, Nb)-type ordered nanoprecipitates (∼ 12 nm). The alloy achieves a high tensile strength up to 1.6 GPa and a uniform ductility of 33%. The low SFE of the fcc matrix promotes the formation of nanotwins and parallel microbands during plastic deformation which could remarkably enhance the strain hardening capacity. This work provides a strategy for developing ultrahigh-strength alloys with large uniform ductility.

2.
Nat Commun ; 15(1): 1863, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424083

RESUMO

Simultaneous improvement of strength and conductivity is urgently demanded but challenging for bimetallic materials. Here we show by creating a self-assembled lamellar (SAL) architecture in W-Cu system, enhancement in strength and electrical conductivity is able to be achieved at the same time. The SAL architecture features alternately stacked Cu layers and W lamellae containing high-density dislocations. This unique layout not only enables predominant stress partitioning in the W phase, but also promotes hetero-deformation induced strengthening. In addition, the SAL architecture possesses strong crack-buffering effect and damage tolerance. Meanwhile, it provides continuous conducting channels for electrons and reduces interface scattering. As a result, a yield strength that doubles the value of the counterpart, an increased electrical conductivity, and a large plasticity were achieved simultaneously in the SAL W-Cu composite. This study proposes a flexible strategy of architecture design and an effective method for manufacturing bimetallic composites with excellent integrated properties.

3.
Nanomicro Lett ; 15(1): 222, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812292

RESUMO

Si is a promising anode material for Li ion batteries because of its high specific capacity, abundant reserve, and low cost. However, its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process. The high stress induced by the Li concentration gradient and anisotropic deformation is the main reason for the fracture of Si particles. Here we present a new stress mitigation strategy by uniformly distributing small amounts of Sn and Sb in Si micron-sized particles, which reduces the Li concentration gradient and realizes an isotropic lithiation/delithiation process. The Si8.5Sn0.5Sb microparticles (mean particle size: 8.22 µm) show over 6000-fold and tenfold improvements in electronic conductivity and Li diffusivity than Si particles, respectively. The discharge capacities of the Si8.5Sn0.5Sb microparticle anode after 100 cycles at 1.0 and 3.0 A g-1 are 1.62 and 1.19 Ah g-1, respectively, corresponding to a retention rate of 94.2% and 99.6%, respectively, relative to the capacity of the first cycle after activation. Multicomponent microparticle anodes containing Si, Sn, Sb, Ge and Ag prepared using the same method yields an ultra-low capacity decay rate of 0.02% per cycle for 1000 cycles at 1 A g-1, corroborating the proposed mechanism. The stress regulation mechanism enabled by the industry-compatible fabrication methods opens up enormous opportunities for low-cost and high-energy-density Li-ion batteries.

4.
Nat Commun ; 14(1): 3006, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230991

RESUMO

High-performance refractory alloys with ultrahigh strength and ductility are in demand for a wide range of critical applications, such as plasma-facing components. However, it remains challenging to increase the strength of these alloys without seriously compromising their tensile ductility. Here, we put forward a strategy to "defeat" this trade-off in tungsten refractory high-entropy alloys by stepwise controllable coherent nanoprecipitations (SCCPs). The coherent interfaces of SCCPs facilitate the dislocation transmission and relieve the stress concentrations that can lead to premature crack initiation. As a consequence, our alloy displays an ultrahigh strength of 2.15 GPa with a tensile ductility of 15% at ambient temperature, with a high yield strength of 1.05 GPa at 800 °C. The SCCPs design concept may afford a means to develop a wide range of ultrahigh-strength metallic materials by providing a pathway for alloy design.

5.
Adv Sci (Weinh) ; 9(33): e2203139, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202625

RESUMO

Soft magnetic high-entropy alloy thin films (HEATFs) exhibit remarkable freedom of material-structure design and physical-property tailoring, as well as, high cut-off frequencies and outstanding electrical resistivities, making them potential candidates for high-frequency magnetic devices. In this study, a CoCrFeNi film with excellent soft magnetic properties is developed by forming a novel core-shell structure via native oxidation, with ferromagnetic elements Fe, Co, and Ni as the core and the Cr oxide as the shell layer. The core-shell structure enables a high saturation magnetization, enhances the electrical resistivity, and thus reduces the eddy-current loss. For further optimizing the soft magnetic properties, O is deliberately introduced into the HEATFs, and the O-incorporated HEATFs exhibit an electrical resistivity of 237 µΩ·cm, a saturation magnetization of 535 emu cm-3 , and a coercivity of 23 A m-1 . The factors that determine the ferromagnetism and coercivity of the CoCrFeNi-based HEATFs are examined in detail by evaluating the microstructures, magnetic domains, chemical valency, and 3D microscopic compositional distributions of the prepared films. These results are anticipated to provide insights into the magnetic behaviors of soft magnetic HEATFs, as well as aid in the construction of a promising material-design strategy for these unique materials.

6.
Nat Commun ; 11(1): 6240, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288762

RESUMO

Nano-lamellar materials with ultrahigh strengths and unusual physical properties are of technological importance for structural applications. However, these materials generally suffer from low tensile ductility, which severely limits their practical utility. Here we show that markedly enhanced tensile ductility can be achieved in coherent nano-lamellar alloys, which exhibit an unprecedented combination of over 2 GPa yield strength and 16% uniform tensile ductility. The ultrahigh strength originates mainly from the lamellar boundary strengthening, whereas the large ductility correlates to a progressive work-hardening mechanism regulated by the unique nano-lamellar architecture. The coherent lamellar boundaries facilitate the dislocation transmission, which eliminates the stress concentrations at the boundaries. Meanwhile, deformation-induced hierarchical stacking-fault networks and associated high-density Lomer-Cottrell locks enhance the work hardening response, leading to unusually large tensile ductilities. The coherent nano-lamellar strategy can potentially be applied to many other alloys and open new avenues for designing ultrastrong yet ductile materials for technological applications.

7.
Sci Bull (Beijing) ; 62(15): 1043-1044, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659329
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA