Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080648

RESUMO

The lamellar structure of graphene oxide and the filling effect of nano-cerium oxide particles together provide a good barrier and stability to coating. In this paper, cerium oxide-graphene oxide (4:1) nanocomposite was prepared by the hydrothermal synthesis method. The effect of cerium oxide-graphene oxide (4:1) nanocomposite on the anticorrosion properties of epoxy coating in simulated acid rain solution was studied by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), Mott-Schottky curve, Tafel curve, and micromorphological characterization, in order to compare it with pure epoxy coating, graphene oxide epoxy coating, and cerium oxide epoxy coating. The obtained results showed that cerium oxide-graphene oxide (4:1) epoxy coating's protection efficiency was as high as 98.62%. These results indicated that cerium oxide-graphene oxide modified anticorrosive coating had an excellent application prospect in an acid rain environment. Meanwhile, owing to the poor protection ability of epoxy resin and unstably hydrolysis product of CeO2 to the acidic medium, the resistance of CeO2-GO (4:1)/EP coating to acidic corrosive medium was relatively poorer than that of neutral and saline-alkali corrosive medium.

2.
Polymers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419213

RESUMO

Due to its special two-dimensional lamellar structure, graphene possesses an excellent shielding effect, hydrophobic characteristics and large specific surface area, which can effectively isolate the internal structure from the external corrosive media. However, lamellar graphene is easy to stack and agglomerate, which limits its anti-corrosion performance. In this paper, cerium oxide-graphene oxide (CeO2-GO) nanocomposites were prepared by a hydrothermal synthesis method. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) were applied for microstructure examination, showing that a large number of nanoscale granular cerium oxide grew on the lamellar graphene oxide surface, which improved the dispersion performance of graphene inside the matrix. The anti-corrosion properties of the coating were analyzed and illustrated by open circuit potential (OCP), frequency response analysis, Tafel curve and Mott-Schottky curve. The results indicated that the CeO2-GO (4:1) nanocomposite not only eliminated the agglomeration of graphene to some extent, but also prepared the graphene epoxy coating with good dispersion, which further promoted its anti-corrosion performance. The paper proposed a feasible solution for GO dispersion in cement-based materials and lays a solid theoretical foundation for the engineering application of cerium oxide-graphene oxide modified anticorrosive coating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA