Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38866636

RESUMO

Pruritus, rash, and various other forms of dermatotoxicity are the most frequent adverse events among patients with cancer receiving targeted molecular therapy and immunotherapy. Immune checkpoint inhibitors, macrophage-targeting agents, and epidermal growth factor receptor/MEK inhibitors not only exert antitumor effects but also interfere with molecular pathways essential for skin immune homeostasis. Studying cancer therapy-induced dermatotoxicity helps us identify molecular mechanisms governing skin immunity and deepen our understanding of human biology. This review summarizes new mechanistic insights emerging from the analysis of cutaneous adverse events and discusses knowledge gaps that remain to be closed by future research.

2.
J Immunol ; 208(12): 2613-2621, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623662

RESUMO

Keratinocytes, the epithelial cells of the skin, reprogram their gene expression and produce immune effector molecules when exposed to environmental and endogenous triggers of inflammation. It remains unclear how keratinocytes process physiological signals generated during skin irritation and switch from a homeostatic to an inflammatory state. In this article, we show that the stress-activated protein kinase p38α is crucial for keratinocytes to prompt changes in their transcriptome upon cytokine stimulation and drive inflammation in allergen-exposed skin. p38α serves this function by phosphorylating p63, a transcription factor essential for the lineage identity and stemness of the skin epithelium. Phosphorylation by p38α alters the activity of p63 and redeploys this developmental transcription factor to a gene expression program linked to inflammation. Genetic ablation and pharmacological inhibition of p38α or the p38α-p63 target gene product MMP13 attenuate atopic dermatitis-like disease in mice. Our study reveals an epithelial molecular pathway promoting skin inflammation and actionable through treatment with topical small-molecule therapeutics.


Assuntos
Dermatite Atópica , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fatores de Transcrição , Animais , Dermatite Atópica/metabolismo , Inflamação/metabolismo , Queratinócitos/metabolismo , Camundongos , Fosforilação , Fatores de Transcrição/metabolismo
3.
Mol Cancer Res ; 19(3): 507-515, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33234577

RESUMO

Hematopoietic-derived cells are integral components of the tumor microenvironment and serve as critical mediators of tumor-host interactions. Host cells derived from myeloid and lymphoid lineages perform well-established functions linked to cancer development, progression, and response to therapy. It is unclear whether host erythroid cells also contribute to shaping the path that cancer can take, but emerging evidence points to this possibility. Here, we show that tumor-promoting environmental stress and tumor-induced hemodynamic changes trigger renal erythropoietin production and erythropoietin-dependent expansion of splenic erythroid cell populations in mice. These erythroid cells display molecular features indicative of an immature erythroid phenotype, such as the expression of both CD71 and TER119 and the retention of intact nuclei, and express genes encoding immune checkpoint molecules. Nucleated erythroid cells with similar properties are present in mouse and human tumor tissues. Antibody-mediated erythropoietin blockade reduces tumor-responsive erythroid cell induction and tumor growth. These findings reveal the potential of tumor-induced erythropoietin and erythroid cells as targets for cancer treatment. IMPLICATIONS: : Our study identifies erythropoietin and erythroid cells as novel players in tumor-host interactions and highlights the involvement of multiorgan signaling events in their induction in response to environmental stress and tumor growth.


Assuntos
Células Eritroides/metabolismo , Proteínas de Checkpoint Imunológico/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Transdução de Sinais
4.
Melanoma Res ; 30(4): 336-347, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32628430

RESUMO

Cellular senescence is a major barricade on the path of cancer development, yet proteins secreted from senescent cells exert complex and often discordant effects on subsequent cancer evolution. Somatic genome alternations driving the formation of nevi and melanoma are efficient inducers of cellular senescence. Melanocyte and melanoma cell senescence is likely to come into play as a key factor affecting the course of tumorigenesis and responsiveness to therapy; little mechanistic information has been generated, however, that substantiates this idea and facilitates its clinical translation. Here, we established and characterized a model of melanoma cell senescence in which pharmacologically induced DNA damage triggered divergent ATM kinase- and STING-dependent intracellular signaling cascades and resulted in cell cycle arrest, cytomorphologic remodeling, and drastic secretome changes. Targeted proteome profiling revealed that senescent melanoma cells in this model secreted a panoply of proteins shaping the tumor immune microenvironment. CRISPR-mediated genetic ablation of the p38α and IKKß signaling modules downstream of the ATM kinase severed the link between DNA damage and this secretory phenotype without restoring proliferative capacity. A similar genetic dissection showed that loss of STING signaling prevented type I interferon induction in DNA-damaged melanoma cells but otherwise left the senescence-associated processes in our model intact. Actionable proteins secreted from senescent melanoma cells or involved in senescence-associated intracellular signaling hold potential as markers for melanoma characterization and targets for melanoma treatment.


Assuntos
Dano ao DNA/genética , Melanoma/genética , Proteômica/métodos , Animais , Senescência Celular , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 117(6): 3103-3113, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980518

RESUMO

Neutrophils are the most abundant immune cells found in actively inflamed joints of patients with rheumatoid arthritis (RA), and most animal models for RA depend on neutrophils for the induction of joint inflammation. Exogenous IL-4 and IL-13 protect mice from antibody-mediated joint inflammation, although the mechanism is not understood. Neutrophils display a very strong basal expression of STAT6, which is responsible for signaling following exposure to IL-4 and IL-13. Still, the role of IL-4 and IL-13 in neutrophil biology has not been well studied. This can be explained by the low neutrophil surface expression of the IL-4 receptor α-chain (IL-4Rα), essential for IL-4- and IL-13-induced STAT6 signaling. Here we identify that colony stimulating factor 3 (CSF3), released during acute inflammation, mediates potent STAT3-dependent neutrophil IL-4Rα up-regulation during sterile inflammatory conditions. We further demonstrate that IL-4 limits neutrophil migration to inflamed joints, and that CSF3 combined with IL-4 or IL-13 results in a prominent neutrophil up-regulation of the inhibitory Fcγ receptor (FcγR2b). Taking these data together, we demonstrate that the IL-4 and CSF3 pathways are linked and play important roles in regulating proinflammatory neutrophil behavior.


Assuntos
Artrite/metabolismo , Interleucina-4 , Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA