Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(13): 3778-3792, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37106480

RESUMO

Since Darwin put forward his opposing hypotheses to explain the successful establishment of species in areas outside their native ranges, the preadaptation and competition-relatedness hypotheses, known as Darwin's naturalization conundrum, numerous studies have sought to understand the relative importance of each. Here, we take advantage of well-characterized beetle communities across laurel forests of the Canary Islands for a first evaluation of the relative support for Darwin's two hypotheses within arthropods. We generated a mitogenome backbone tree comprising nearly half of the beetle genera recorded within the Canary Islands for the phylogenetic placement of native and introduced species sampled in laurel forests, using cytochrome c oxidase I (COI) sequences. For comparative purposes, we also assembled and phylogenetically placed a data set of COI sequences for introduced beetle species that were not sampled within laurel forests. Our results suggest a stronger effect of species preadaptation over resource competition, while also revealing an underappreciated shortfall in arthropod biodiversity data-knowledge of species as being native or introduced. We name this the Humboldtean shortfall and suggest that similar studies using arthropods should incorporate DNA barcode sequencing to mitigate this problem.


Assuntos
Artrópodes , Besouros , Animais , Filogenia , Besouros/genética , Biodiversidade , Florestas , Espécies Introduzidas
2.
Proc Biol Sci ; 289(1975): 20220489, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35582805

RESUMO

Dispersal ability is known to influence geographical structuring of genetic variation within species, with a direct relationship between low vagility and population genetic structure, which can potentially give rise to allopatric speciation. However, our general understanding of the relationship between dispersal ability, population differentiation and lineage diversification is limited. To address this issue, we sampled mitochondrial DNA variation within lineages of beetles and spiders across the Canary Islands to explore the relationships between dispersal ability, differentiation within lineages and diversification. We found positive relationships between population genetic structure and diversification for both beetles and spiders. Comparisons between dispersive and non-dispersive lineages revealed significant differences for both lineage differentiation and diversification. For both taxa, non-dispersive lineages had stronger population genetic structure. Genus-level endemic species richness and proxies for diversification rate within genera were higher in non-dispersive taxa for both beetles and spiders. Comparisons of average and maximum node divergences within genera suggest that species turnover may be higher in non-dispersive genera. Our results reveal a model where dispersal limitation may shape the diversity of lineages across evolutionary timescales by positively influencing intraspecific and species diversity, moderated by higher extinction rates compared to more dispersive lineages.


Assuntos
Besouros , Aranhas , Animais , Evolução Biológica , Besouros/genética , Especiação Genética , Variação Genética , Genética Populacional , Filogenia , Aranhas/genética
3.
J Anim Ecol ; 89(9): 1992-1996, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448375

RESUMO

In Focus: Scalercio, S., Cini, A., Menchetti, M., Voda, R., Bonelli, S., Bordoni, A., … Dapporto, L. (2020). How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13196. Biotic and abiotic factors can shape geographical patterns of genetic variation within species, but few studies have addressed how this might generate common patterns at the level of communities of species. Scalercio et al. (2020) have combined mtDNA sequence data and life-history traits, to reveal a repeated pattern of genetic structure between Sicilian and southern Italian butterfly populations, which are separated by only 3 km of ocean. They reveal how intrinsic species traits and extrinsic environmental constraints explain this pattern, demonstrating an important role for wind. Moreover, the inclusion of almost 8,000 georeferenced sequences reveals that, in spite of also being present in southern Italy, almost half of Sicilian butterfly species are more closely related to populations from other parts of Europe, Asia or North Africa. We provide further discussion on the biogeographic barrier they identify, and the potential of community-level DNA barcoding to identify processes that structure genetic variation across communities.


Assuntos
Borboletas , África do Norte , Animais , Borboletas/genética , DNA Mitocondrial/genética , Europa (Continente) , Variação Genética , Itália , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA