Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 164: 213982, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098081

RESUMO

The efficiency of synthetic bone grafts can be evaluated either in osseous sites, to analyze osteoconduction or ectopically, in intramuscular or subcutaneous sites, to assess osteoinduction. Bone regeneration is usually evaluated in terms of the presence and quantity of newly formed bone, but little information is normally provided on the quality of this bone. Here, we propose a novel approach to evaluate bone quality by the combined use of spectroscopy techniques and nanoindentation. Calcium phosphate scaffolds with different architectures, either foamed or 3D-printed, that were implanted in osseous or intramuscular defects in Beagle dogs for 6 or 12 weeks were analyzed. ATR-FTIR and Raman spectroscopy were performed, and mineral-to-matrix ratio, crystallinity, and mineral and collagen maturity were calculated and mapped for the newly regenerated bone and the mature cortical bone from the same specimen. For all the parameters studied, the newly-formed bone showed lower values than the mature host bone. Hardness and elastic modulus were determined by nanoindentation and, in line with what was observed by spectroscopy, lower values were observed in the regenerated bone than in the cortical bone. While, as expected, all techniques pointed to an increase in the maturity of the newly-formed bone between 6 and 12 weeks, the bone found in the intramuscular samples after 12 weeks presented lower mineralization than the intraosseous counterparts. Moreover, scaffold architecture also played a role in bone maturity, with the foamed scaffolds showing higher mineralization and crystallinity than the 3D-printed scaffolds after 12 weeks.

2.
Nanomaterials (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607137

RESUMO

The development of direct dimethyl ether (DME) solid oxide fuel cells (SOFCs) has several drawbacks, due to the low catalytic activity and carbon deposition of conventional Ni-zirconia-based anodes. In the present study, the insertion of 2.0 wt.% Ru-Ce0.7Zr0.3O2-δ (ruthenium-zirconium-doped ceria, Ru-CZO) as an anode catalyst layer (ACL) is proposed to be a promising solution. For this purpose, the CZO powder was prepared by the sol-gel synthesis method, and subsequently, nanoparticles of Ru (1.0-2.0 wt.%) were synthesized by the impregnation method and calcination. The catalyst powder was characterized by BET-specific surface area, X-ray diffraction (XRD), field emission scanning electron microscopy with an energy-dispersive spectroscopy detector (FESEM-EDS), and transmission electron microscopy (TEM) techniques. Afterward, the catalytic activity of Ru-CZO catalyst was studied using DME partial oxidation. Finally, button anode-supported SOFCs with Ru-CZO ACL were prepared, depositing Ru-CZO onto the anode support and using an annealing process. The effect of ACL on the electrochemical performance of cells was investigated under a DME and air mixture at 750 °C. The results showed a high dispersion of Ru in the CZO solid solution, which provided a complete DME conversion and high yields of H2 and CO at 750 °C. As a result, 2.0 wt.% Ru-CZO ACL enhanced the cell performance by more than 20% at 750 °C. The post-test analysis of cells with ACL proved a remarkable resistance of Ru-CZO ACL to carbon deposition compared to the reference cell, evidencing the potential application of Ru-CZO as a catalyst as well as an ACL for direct DME SOFCs.

3.
ACS Appl Bio Mater ; 6(9): 3889-3901, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37608579

RESUMO

The incorporation of exogenous lactate into cardiac tissues is a regenerative strategy that is rapidly gaining attention. In this work, two polymeric platforms were designed to achieve a sustained release of lactate, combining immediate and prolonged release profiles. Both platforms contained electrospun poly(lactic acid) (PLA) fibers and an alginate (Alg) hydrogel. In the first platform, named L/K(x)/Alg-PLA, lactate and proteinase K (x mg of enzyme per 1 g of PLA) were directly loaded into the Alg hydrogel, into which PLA fibers were assembled. In the second platform, L/Alg-K(x)/PLA, fibers were produced by electrospinning a proteinase K:PLA solution and, subsequently, assembled within the lactate-loaded hydrogel. After characterizing the chemical, morphological, and mechanical properties of the systems, as well as their cytotoxicity, the release profiles of the two platforms were determined considering different amounts of proteinase K (x = 5.2, 26, and 52 mg of proteinase K per 1 g of PLA), which is known to exhibit a broad cleavage activity. The profiles obtained using L/Alg-K(x)/PLA platforms with x = 26 and 52 were the closest to the criteria that must be met for cardiac tissue regeneration. Finally, the amount of lactate directly loaded in the Alg hydrogel for immediate release and the amount of protein in the electrospinning solution were adapted to achieve a constant lactate release of around 6 mM per day over 1 or 2 weeks. In the optimized bioplatform, in which 6 mM lactate was loaded in the hydrogel, the amount of fibers was increased by a factor of ×3, the amount of enzyme was adjusted to 40 mg per 1 g of PLA, and a daily lactate release of 5.9 ± 2.7 mM over a period of 11 days was achieved. Accordingly, the engineered device fully satisfied the characteristics and requirements for heart tissue regeneration.


Assuntos
Hidrogéis , Ácido Láctico , Preparações de Ação Retardada/farmacologia , Endopeptidase K , Poliésteres , Alginatos
4.
ACS Appl Energy Mater ; 6(15): 7887-7898, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37592929

RESUMO

La0.6Sr0.4CoO3-δ (LSC) perovskite, as a potential catalyst precursor for hydrogen (H2)-rich production by steam reforming of methanol (SRM) and oxidative steam reforming of methanol (OSRM), was investigated. For this purpose, LSC was synthesized by the citrate sol-gel method and characterized by complementary analytical techniques. The catalytic activity was studied for the as-prepared and prereduced LSC and compared with the undoped LaCoO3-δ (LCO) at several feed gas compositions. Furthermore, the degradation and regeneration of LSC under repeated redox cycles were studied. The results evidenced that the increase in the water/methanol ratio under SRM, and the O2 addition under OSRM, increased the CO2 formation and decreased both the H2 selectivity and catalyst deactivation caused by carbon deposition. Methanol conversion of the prereduced LSC was significantly enhanced at a lower temperature than that of as-prepared LSC and undoped LCO. This was attributed to the performance of metallic cobalt nanoparticles highly dispersed under reducing atmospheres. The reoxidation program in repetitive redox cycles played a crucial role in the regeneration of catalysts, which could be regenerated to the initial perovskite structure under a specific thermal treatment, minimizing the degradation of the catalytic activity and surface.

5.
Materials (Basel) ; 15(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500100

RESUMO

The objective of this study was to explore the mechanical properties of AlCrSiN and AlTiSiN coatings deposited on Inconel and steel substrates after thermal treatments of 500 °C and 800 °C. Nanoindentation was used to measure the hardness and elastic modulus of the coatings, and microindentation was used for observing the contact damage with Hertzian contact loadings. Microscratch and Mercedes tests were used to evaluate the adhesive strength between coating and substrate with both progressive and static loads, respectively. The surface damage was inspected by optical microscopy and scanning electron microscopy (SEM). Focus ion beams (FIB) were used to mill the cross-sections in order to detect the extent and mode of failure. The results show that AlCrSiN coatings and Inconel substrates exhibit better mechanical performance, even after thermal treatments.

6.
Bioact Mater ; 6(12): 4430-4446, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34027233

RESUMO

In the recent decades, zinc (Zn) and its alloys have been drawing attention as promising candidates for bioresorbable cardiovascular stents due to its degradation rate more suitable than magnesium (Mg) and iron (Fe) alloys. However, its mechanical properties need to be improved in order to meet the criteria for vascular stents. This work investigates the mechanical properties, biodegradability and biocompatibility of Zn-Mg and Zn-Cu alloys in order to determine a proper alloy composition for optimal stent performance. Nanoindentation measurements are performed to characterize the mechanical properties at the nanoscale as a function of the Zn microstructure variations induced by alloying. The biodegradation mechanisms are discussed and correlated to microstructure, mechanical performance and bacterial/cell response. Addition of Mg or Cu alloying elements refined the microstructure of Zn and enhanced yield strength (YS) and ultimate tensile strength (UTS) proportional to the volume fraction of secondary phases. Zn-1Mg showed the higher YS and UTS and better performance in terms of degradation stability in Hanks' solution. Zn-Cu alloys presented an antibacterial effect for S. aureus controlled by diffusion mechanisms and by contact. Biocompatibility was dependent on the degradation rate and the nature of the corrosion products.

7.
Materials (Basel) ; 14(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672124

RESUMO

Herein, the influence of the substrate in the formation of zirconium oxide monolayer, from an aqueous hexafluorozirconic acid solution, by chemical conversion and by electro-assisted deposition, has been approached. The nanoscale dimensions of the ZrO2 film is affected by the substrate nature and roughness. This study evidenced that the mechanism of Zr-EAD is dependent on the potential applied and on the substrate composition, whereas conversion coating is uniquely dependent on the adsorption reaction time. The zirconium oxide based nanofilms were more homogenous in AA2024 substrates if compared to pure Al grade (AA1100). It was justified by the high content of Cu alloying element present in the grain boundaries of the latter. Such intermetallic active sites favor the obtaining of ZrO2 films, as demonstrated by XPS and AFM results. From a mechanistic point of view, the electrochemical reactions take place simultaneously with the conventional chemical conversion process driven by ions diffusion. Such findings will bring new perspectives for the generation of controlled oxide coatings in modified electrodes used, as for example, in the construction of battery cells; in automotive and in aerospace industries, to replace micrometric layers of zinc phosphate by light-weight zirconium oxide nanometric ones. This study is particularly addressed for the reduction of industrial waste by applying green bath solutions without the need of auxiliary compounds and using lightweight ceramic materials.

8.
Materials (Basel) ; 14(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383871

RESUMO

Graphene-based nanostructures, used as potential reinforcement in ceramic composites, have a great tendency to agglomerate. This requires the use of homogenization techniques during the powder processing, posing the need to evaluate how these techniques affect the microstructure and the mechanical properties of the resulting composites. The influence of the processing route on the properties of 3YTZP (3 mol % yttria tetragonal zirconia polycrystals) ceramic composites with 10 vol % cost-effective GNP (graphene nanoplatelets) has been addressed. Four different powder processing routines combining ultrasonic powder agitation (UA) and planetary ball milling (PBM) in wet and dry media have been used and all the composites were densified by spark plasma sintering (SPS). The mechanical properties at room temperature in the macroscale have been assessed by Vickers indentations, four-point bending tests and the impulse-echo technique, while instrumented indentation was used to measure the hardness and Young's modulus at the nanoscale. The application of dry-PBM enhances greatly the mechanical and electrical isotropy of the composites, slightly increases the hardness and lowers the elastic modulus, independently of the application of UA. The combination of UA and dry-PBM enhances the flexure strength by 50%, which is desirable for structural applications.

9.
Dent Mater ; 33(1): e28-e38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27745774

RESUMO

OBJECTIVE: The aim of this work is to generate micrometric linear patterns with different topography on dental grade zirconia by means of UV laser interference and to assess the quality of the produced surface, both in term of the geometry produced and of the surface damage induced in the material. METHODS: The third harmonic of a Q-switched Nd:YAG laser (355nm, pulse duration of 10ns and repetition rate of 1Hz) was employed to pattern the surface of 3Y-TZP with micrometric-spaced lines. The resulting topography was characterized with White Light Interferometry and Scanning electron microscopy: pattern depth (H), amplitude roughness parameters (Sa, filtered-Sa), Fourier spatial analysis and collateral damages were related to laser fluence and number of pulses employed. RESULTS: With our experimental setup, line-patterning of zirconia surfaces can be achieved with periodicities comprised within 5 and 15µm. Tuning laser parameters allows varying independently pattern depth, overall roughness and surface finish. Increasing both fluence and number of pulses allows producing deeper patterns (maximum achievable depth of 1µm). However, increasing the number of pulses has a detrimental effect on the quality of the produced lines. Surface damage (intergranular cracking, open porosity and nano-droplets formation) can be generated, depending on laser parameters. SIGNIFICANCE: This work provides a parametric analysis of surface patterning by laser interference on 3Y-TZP. Best conditions in terms of quality of the produced pattern and minimum material damage are obtained for low number of pulses with high laser fluence. With the employed method we can produce zirconia materials with controlled topography that are expected to enhance biological response and mechanical performance of dental components.


Assuntos
Microscopia Eletrônica de Varredura , Zircônio , Materiais Dentários , Lasers de Estado Sólido , Teste de Materiais , Propriedades de Superfície
10.
J Mater Sci Mater Med ; 26(2): 72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25631270

RESUMO

Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.


Assuntos
Eletrólise/métodos , Osseointegração/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Gases em Plasma/química , Titânio/química , Ligas/química , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Materiais Revestidos Biocompatíveis/síntese química , Humanos , Teste de Materiais , Camundongos , Oxirredução , Ratos , Propriedades de Superfície
11.
Dent Mater ; 29(5): 566-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23537568

RESUMO

OBJECTIVE: The goal of this work is to investigate t-m phase transformation, and subsurface damage in 3Y-TZP after sandblasting. METHODS: Commercial grade 3Y-TZP powder was conventionally sintered and fully dense specimens were obtained. Specimens were sandblasted using different particle sizes (110 and 250µm) and pressures (2 and 4bar) for 10s. Phase transformation was measured on the surface and in the cross-section using X-ray diffraction and micro Raman spectroscopy, respectively. Subsurface damage was investigated on cross-sections using SEM and in shallow cross-sections machined by focused ion beam. RESULTS: Sandblasting induced monoclinic volume fraction is in the range of 12-15% on the surface. In the cross-section, a non-homogeneous phase transformation gradient is found up to the depth of 12±1µm. The subsurface damage observed was plastic deformation in grains with the presence of martensite plates, and this effect is found to be larger in specimens sandblasted with large particles. SIGNIFICANCE: The extent of subsurface tetragonal-monoclinic transformation and damage induced by sandblasting are reported for different sandblasting conditions. This knowledge is critical in order to understand the effect of sandblasting on mechanical properties of zirconia used to fabricate dental crowns and frameworks.


Assuntos
Porcelana Dentária/química , Ítrio/química , Zircônio/química , Microscopia Eletrônica de Varredura , Dióxido de Silício , Análise Espectral Raman , Propriedades de Superfície , Difração de Raios X
12.
Dent Mater ; 29(3): 348-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23384739

RESUMO

OBJECTIVES: The objective of this work is to study the crack produced by spherical and sharp indentation on veneering feldspathic dental porcelain in order to understand the morphology of the cracks in the surface and beneath the indentation using a tomographic technique. The geometry of cracks produced under contact loading are directly related to the structural integrity and reliability of dental prosthesis. METHODS: Monotonic Hertzian contact loading and nanoindentation tests were performed on feldspathic porcelain (VITA-VM9) coatings. Residual imprints and the cracks produced by the indentations were characterized by 3-dimensional reconstruction using focused ion beam tomography. RESULTS: Under nanoindentation, the propagating crack deflects due to the interaction with the leucite particles resulting in a crack with a complex morphology. Under spherical contact loading, multiple ring cracks were observed at the surface, with a conical shape beneath the residual imprint. SIGNIFICANCE: These results will help to improve the mechanical performance of these materials by detecting potential causes of failure for the long term structural integrity and reliability of the prosthesis.


Assuntos
Silicatos de Alumínio/química , Porcelana Dentária/química , Propriedades de Superfície , Zircônio/química , Análise do Estresse Dentário , Módulo de Elasticidade , Dureza , Tomografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA