Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 1): 124734, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150366

RESUMO

The Inulinase from Kluyveromyces marxianus ISO3 (Inu-ISO3) is an enzyme able to hydrolyze linear fructans such as chicory inulin as well as branched fructans like agavin. This enzyme was cloned and expressed in Komagataella pastoris to study the role of selected aromatic and polar residues in the catalytic pocket by Alanine scanning. Molecular dynamics (MD) simulations and enzyme kinetics analysis were performed to study the functional consequences of these amino acid substitutions. Site-directed mutagenesis was used to construct the mutants of the enzyme after carrying out the MD simulations between Inu-ISO3 and its substrates. Mutation Trp79:Ala resulted in the total loss of activity when fructans were used as substrates, while with sucrose, the activity decreased by 98 %. In contrast, the mutations Phe113:Ala and Gln236:Ala increased the invertase activity when sucrose was used as a substrate. Although these amino acids are not part of the conserved motifs where the catalytic triad is located, they are essential for the enzyme's activity. In silico and experimental approaches corroborate the relevance of these residues for substrate binding and their influence on enzymatic activity.


Assuntos
Kluyveromyces , Simulação de Dinâmica Molecular , Glicosídeo Hidrolases/química , Kluyveromyces/genética , Frutanos/metabolismo , Aminoácidos/metabolismo , Sacarose/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499311

RESUMO

Rhodotorula dairenensis ß-fructofuranosidase is a highly glycosylated enzyme with broad substrate specificity that catalyzes the synthesis of 6-kestose and a mixture of the three series of fructooligosaccharides (FOS), fructosylating a variety of carbohydrates and other molecules as alditols. We report here its three-dimensional structure, showing the expected bimodular arrangement and also a unique long elongation at its N-terminus containing extensive O-glycosylation sites that form a peculiar arrangement with a protruding loop within the dimer. This region is not required for activity but could provide a molecular tool to target the dimeric protein to its receptor cellular compartment in the yeast. A truncated inactivated form was used to obtain complexes with fructose, sucrose and raffinose, and a Bis-Tris molecule was trapped, mimicking a putative acceptor substrate. The crystal structure of the complexes reveals the major traits of the active site, with Asn387 controlling the substrate binding mode. Relevant residues were selected for mutagenesis, the variants being biochemically characterized through their hydrolytic and transfructosylating activity. All changes decrease the hydrolytic efficiency against sucrose, proving their key role in the activity. Moreover, some of the generated variants exhibit redesigned transfructosylating specificity, which may be used for biotechnological purposes to produce novel fructosyl-derivatives.


Assuntos
Rhodotorula , beta-Frutofuranosidase , beta-Frutofuranosidase/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Oligossacarídeos/química , Especificidade por Substrato , Sacarose/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886948

RESUMO

Chitin is the most widespread amino renewable carbohydrate polymer in nature and the second most abundant polysaccharide. Therefore, chitin and chitinolytic enzymes are becoming more importance for biotechnological applications in food, health and agricultural fields, the design of effective enzymes being a paramount issue. We report the crystal structure of the plant-type endo-chitinase Chit33 from Trichoderma harzianum and its D165A/E167A-Chit33-(NAG)4 complex, which showed an extended catalytic cleft with six binding subsites lined with many polar interactions. The major trait of Chit33 is the location of the non-conserved Asp117 and Arg274 acting as a clamp, fixing the distorted conformation of the sugar at subsite -1 and the bent shape of the substrate, which occupies the full catalytic groove. Relevant residues were selected for mutagenesis experiments, the variants being biochemically characterized through their hydrolytic activity against colloidal chitin and other polymeric substrates with different molecular weights and deacetylation percentages. The mutant S118Y stands out, showing a superior performance in all the substrates tested, as well as detectable transglycosylation capacity, with this variant providing a promising platform for generation of novel Chit33 variants with adjusted performance by further design of rational mutants'. The putative role of Tyr in binding was extrapolated from molecular dynamics simulation.


Assuntos
Quitinases , Catálise , Quitina/metabolismo , Quitinases/metabolismo , Peso Molecular , Especificidade por Substrato
4.
Comput Struct Biotechnol J ; 19: 5466-5478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712392

RESUMO

Chitinases degrade chitin into low molecular weight chitooligomers, which have a broad range of industrial, agricultural, and medical functions. Understanding the relationship between the diverse characteristics of chitinases and their functions is necessary for the improvement of functional enzymes that meet specific requirements. We report here a full crystallographic analysis of three complexes obtained from the chitinase Chit42 from Trichoderma harzianum, which represent different states along the enzymatic mechanism. The inactive double mutant D169A/E171A was submitted to soaking/crystallization experiments with hexa-N-acetyl-glucosamine (NAG6) or tetra-N-acetyl-glucosamine (NAG4), trapping the enzyme-substrate complex (Chit42-NAG6), the enzyme-products complex (Chit42-NAG4-NAG2) and a someway intermediate state. Structural comparison among the different complexes depicts the determinants defining the different subsites and revealed a previously unobserved dynamic on-off ligand binding process associated with a motion of its insertion domain, which might be accompanying the role or aromatics in processivity. An ensemble refinement performed to extract dynamic details from the diffraction data elucidates the implication of some highly flexible residues in the productive sliding of the substrate and the product release event. These positions were submitted to mutagenesis and the activity of the variants was investigated in the hydrolysis of NAG6, colloidal chitin and two chitosans with different polymerization and acetylation degree. All the changes affected the Chit42 hydrolytic activity therefore confirming the involvement of these positions in catalysis. Furthermore, we found the variants R295S and E316S improving the apparent catalytic efficiency of chitin and NAG6 and, together with E316A, enhancing the specific activity on chitosan. Therefore, our results provide novel insight into the molecular mechanisms underlying the hydrolysis of chitinous material by fungal chitinases, and suggest new targets to address engineering of these biotechnologically important enzymes.

5.
Comput Struct Biotechnol J ; 19: 2676-2686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093984

RESUMO

Endoxylanases active under extreme conditions of temperature and alkalinity can replace the use of highly pollutant chemicals in the pulp and paper industry. Searching for enzymes with these properties, we carried out a comprehensive bioinformatics study of the GH10 family. The phylogenetic analysis allowed the construction of a radial cladogram in which protein sequences putatively ascribed as thermophilic and alkaliphilic appeared grouped in a well-defined region of the cladogram, designated TAK Cluster. One among five TAK sequences selected for experimental analysis (Xyn11) showed extraordinary xylanolytic activity under simultaneous conditions of high temperature (90 °C) and alkalinity (pH 10.5). Addition of a carbohydrate binding domain (CBM2) at the C-terminus of the protein sequence further improved the activity of the enzyme at high pH. Xyn11 structure, which has been solved at 1.8 Å resolution by X-ray crystallography, reveals an unusually high number of hydrophobic, ionic and hydrogen bond atomic interactions that could account for the enzyme's extremophilic nature.

6.
Sci Rep ; 11(1): 7158, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785821

RESUMO

The ß-fructofuranosidase from Schwanniomyces occidentalis (Ffase) is a useful biotechnological tool for the fructosylation of different acceptors to produce fructooligosaccharides (FOS) and fructo-conjugates. In this work, the structural determinants of Ffase involved in the transfructosylating reaction of the alditols mannitol and erythritol have been studied in detail. Complexes with fructosyl-erythritol or sucrose were analyzed by crystallography and the effect of mutational changes in positions Gln-176, Gln-228, and Asn-254 studied to explore their role in modulating this biocatalytic process. Interestingly, N254T variant enhanced the wild-type protein production of fructosyl-erythritol and FOS by [Formula: see text] 30% and 48%, respectively. Moreover, it produced neokestose, which represented [Formula: see text] 27% of total FOS, and yielded 31.8 g l-1 blastose by using glucose as exclusive fructosyl-acceptor. Noteworthy, N254D and Q176E replacements turned the specificity of Ffase transferase activity towards the synthesis of the fructosylated polyols at the expense of FOS production, but without increasing the total reaction efficiency. The results presented here highlight the relevance of the pair Gln-228/Asn-254 for Ffase donor-sucrose binding and opens new windows of opportunity for optimizing the generation of fructosyl-derivatives by this enzyme enhancing its biotechnological applicability.


Assuntos
Proteínas Fúngicas/metabolismo , Saccharomycetales/enzimologia , beta-Frutofuranosidase/metabolismo , Biotecnologia/métodos , Ensaios Enzimáticos , Eritritol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Cinética , Manitol/metabolismo , Oligossacarídeos/metabolismo , Saccharomycetales/genética , Especificidade por Substrato , Sacarose/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/isolamento & purificação
7.
Foods ; 9(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198073

RESUMO

Saffron, as a food colorant, has been displaced by low-cost synthetic dyes. These have unhealthy properties; thus, their replacement with natural food colorants is an emerging trend. Obesity is a worldwide health problem due to its associated comorbidities. Crocetin esters (crocins) are responsible for the red saffron color. Crocetin (CCT) exhibits healthful properties. We aimed to broaden the existing knowledge on the health properties of CCT isolated from saffron, to facilitate its consideration as a healthy natural food colorant in the future. We evaluated the ability of CCT (1 and 5 µM) to reduce lipid accumulation during the differentiation of 3T3-L1 preadipocytes. Intracellular fat was quantified by Oil Red O staining. CTT cytotoxicity was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The number and size of lipid droplets were analyzed using WimLipid software. The expression of adipogenic genes (CCAAT/enhancer-binding protein (C/EBPß, C/EBPδ, C/EBPα), and peroxisome proliferator-activated receptor γ (PPARγ)) was analyzed using quantitative real-time PCR (qRT-PCR). CCT 5 µM decreased intracellular fat by 22.6%, without affecting viability or lipid droplet generation, via a decrease in C/EBPα expression, implicated in lipid accumulation. Thus, CCT is a potential candidate to be included in dietary therapies aimed at reversing adipose tissue accumulation in obesity.

8.
FEBS J ; 287(24): 5362-5374, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32352213

RESUMO

Reducing-end xylose-releasing exo-oligoxylanases (Rex) are GH8 enzymes that depolymerize xylooligosaccharides complementing xylan degradation by endoxylanases in an exo manner. We have studied Paenibacillus barcinonensis Rex8A and showed the release of xylose from xylooligomers decorated with methylglucuronic acid (UXOS) or with arabinose (AXOS). This gives the enzyme a distinctive trait among known Rex, which show activity only on linear xylooligosaccharides. The structure of the enzyme has been solved by X-ray crystallography showing a (α/α)6 folding common to GH8 enzymes. Analysis of inactived Rex8A-E70A complexed with xylotetraose revealed the existence of at least four binding subsites in Rex8A, with the oligosaccharide occupying subsites -3 to +1. The enzyme shows an extended Leu320-His321-Pro322 loop, common to other Rex, which blocks the binding of longer substrates to positive subsites further than +1 and seems responsible for the lack or diminished activity of Rex enzymes on xylan. Mutants with smaller residues in this loop failed to increase Rex8A activity on the polymer. Analysis of the complexes with AXOS showed the accommodation of arabinose at subsite -2, which cannot be allocated at subsite -1. Arabinose substitutions at the xylose O2 or O3 are accommodated by hydrophobic interaction and seem tolerated rather than recognized by Rex8A. A strained binding of the branch is facilitated by the lack of direct polar interactions of the xylose occupying this subsite, its water-mediated links allowing some conformational flexibility of the sugar. The plasticity of Rex8A is a notable property of the enzyme for its application in xylan deconstruction and upgrading. DATABASE: Structural data are available in PDB database under the accession numbers 6SRD (native form), 6TPP (E70A mutant in complex with EDO), 6TOW (E70A in complex with Xyl4), 6SUD (L320A mutant in complex with xylose), 6SHY (L320A/H321S double mutant in complex with EDO), 6TO0 (E70A in complex with AX3), and 6TRH (E70A in complex with AX4).


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Paenibacillus/enzimologia , Xilose/metabolismo , Xilosidases/química , Xilosidases/metabolismo , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
9.
ACS Chem Biol ; 15(1): 179-188, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31874027

RESUMO

Lactose intolerance is a common digestive disorder that affects a large proportion of the adult human population. The severity of the symptoms is highly variable, depending on the susceptibility to the sugar and the amount digested. For that reason, enzymes that can be used for the production of lactose-free milk and milk derivatives have acquired singular biotechnological importance. One such case is Thermotoga maritima ß-galactosidase (TmLac). Here, we report the cryo-EM structure of TmLac at 2.0 Å resolution. The protein features a newly solved domain at its C-terminus, characteristic of the genus Thermotoga, which promotes a peculiar octameric arrangement. We have assessed the constraints imposed by the quaternary protein structure on the construction of hybrid versions of this GH2 enzyme. Carbohydrate binding modules (CBM) from the CBM2 and CBM9 families have been added at either the amino or carboxy terminus, and the structural and functional effects of such modifications have been analyzed. The results provide a basis for the rational design of hybrid enzymes that can be efficiently attached to different solid supports.


Assuntos
Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Estrutura Quaternária de Proteína , Thermotoga maritima/enzimologia , beta-Galactosidase/química , Aminas/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Carboidratos/química , Ácidos Carboxílicos/química , Domínio Catalítico , Cristalografia por Raios X , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Modelos Moleculares , Engenharia de Proteínas/métodos , Estabilidade Proteica , Solventes/química , Relação Estrutura-Atividade , Especificidade por Substrato , beta-Galactosidase/metabolismo
10.
Bioorg Chem ; 89: 103026, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31226649

RESUMO

The synthesis of multivalent pyrrolidine iminosugars via CuAAC click reaction between different pyrrolidine-azide derivatives and tri- or hexavalent alkynyl scaffolds is reported. The new multimeric compounds, together with the monomeric reference, were evaluated as inhibitors against two homologous GH1 ß-glucosidases (BglA and BglB from Paenibacillus polymyxa). The multivalent inhibitors containing an aromatic moiety in the linker between the pyrrolidine and the scaffold inhibited the octameric BglA (µM range) but did not show affinity against the monomeric BglB, despite the similarity between the active site of both enzymes. A modest multivalent effect (rp/n = 12) was detected for the hexavalent inhibitor 12. Structural analysis of the complexes between the monomeric and the trimeric iminosugar inhibitors (4 and 10) and BglA showed the insertion of the inhibitors at the active site of BglA, confirming a competitive mode of inhibition as indicated by enzyme kinetics. Additionally, structural comparison of the BglA/4 complex with the reported BglB/2F-glucose complex illustrates the key determinants responsible for the inhibitory effect and explains the reasons of the inhibition of BglA and the no inhibition of BglB. Potential inhibition of other ß-glucosidases with therapeutic relevance is discussed under the light of these observations.


Assuntos
Inibidores Enzimáticos/farmacologia , Imino Açúcares/farmacologia , Pirrolidinas/farmacologia , beta-Glucosidase/antagonistas & inibidores , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Imino Açúcares/síntese química , Imino Açúcares/química , Modelos Moleculares , Estrutura Molecular , Paenibacillus polymyxa/enzimologia , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo
11.
Microb Cell Fact ; 17(1): 47, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566690

RESUMO

BACKGROUND: Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-D-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. RESULTS: Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5-6.5 and 30-40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the kcat/Km ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (D-glucosamine)1-8-GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. CONCLUSIONS: Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated chitooligosaccharides, which have enormous biotechnological potential in medicine and food. Chit42 3D structure was characterized and analysed. Production and understanding of how the enzymes generating bioactive chito-oligomers work is essential for their biotechnological application, and paves the way for future work to take advantage of chitinolytic activities.


Assuntos
Quitina/análogos & derivados , Quitina/química , Quitinases/química , Quitosana/química , Proteínas/química , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA