Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 1046192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36579334

RESUMO

Bovine respiratory disease (BRD) is the most common and costly infectious disease affecting the wellbeing and productivity of beef cattle in North America. BRD is a complex disease whose development is dependent on environmental factors and host genetics. Due to the polymicrobial nature of BRD, our understanding of the genetic and molecular mechanisms underlying the disease is still limited. This knowledge would augment the development of better genetic/genomic selection strategies and more accurate diagnostic tools to reduce BRD prevalence. Therefore, this study aimed to utilize multi-omics data (genomics, transcriptomics, and metabolomics) analyses to study the genetic and molecular mechanisms of BRD infection. Blood samples of 143 cattle (80 BRD; 63 non-BRD animals) were collected for genotyping, RNA sequencing, and metabolite profiling. Firstly, a genome-wide association study (GWAS) was performed for BRD susceptibility using 207,038 SNPs. Two SNPs (Chr5:25858264 and BovineHD1800016801) were identified as associated (p-value <1 × 10-5) with BRD susceptibility. Secondly, differential gene expression between BRD and non-BRD animals was studied. At the significance threshold used (log2FC>2, logCPM>2, and FDR<0.01), 101 differentially expressed (DE) genes were identified. These DE genes significantly (p-value <0.05) enriched several immune responses related functions such as inflammatory response. Additionally, we performed expression quantitative trait loci (eQTL) analysis and identified 420 cis-eQTLs and 144 trans-eQTLs significantly (FDR <0.05) associated with the expression of DE genes. Interestingly, eQTL results indicated the most significant SNP (Chr5:25858264) identified via GWAS was a cis-eQTL for DE gene GPR84. This analysis also demonstrated that an important SNP (rs209419196) located in the promoter region of the DE gene BPI significantly influenced the expression of this gene. Finally, the abundance of 31 metabolites was significantly (FDR <0.05) different between BRD and non-BRD animals, and 17 of them showed correlations with multiple DE genes, which shed light on the interactions between immune response and metabolism. This study identified associations between genome, transcriptome, metabolome, and BRD phenotype of feedlot crossbred cattle. The findings may be useful for the development of genomic selection strategies for BRD susceptibility, and for the development of new diagnostic and therapeutic tools.

2.
Front Genet ; 12: 627623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763112

RESUMO

Bovine respiratory disease (BRD) is one of the main factors leading to morbidity and mortality in feedlot operations in North America. A complex of viral and bacterial pathogens can individually or collectively establish BRD in cattle, and to date, most disease characterization studies using transcriptomic techniques examine bronchoalveolar and transtracheal fluids, lymph node, and lung tissue as well as nasopharyngeal swabs, with limited studies investigating the whole-blood transcriptome. Here, we aimed to identify differentially expressed (DE) genes involved in the host immune response to BRD using whole blood and RNA sequencing. Samples were collected from heifers (average arrival weight = 215.0 ± 5.3 kg) with (n = 25) and without (n = 18) BRD at a commercial feedlot in Western Canada. RNAseq analysis showed a distinct whole-blood transcriptome profile between BRD and non-BRD heifers. Further examination of the DE genes revealed that those involved in the host inflammatory response and infectious disease pathways were enriched in the BRD animals, while gene networks associated with metabolism and cell growth and maintenance were downregulated. Overall, the transcriptome profile derived from whole blood provided evidence that a distinct antimicrobial peptide-driven host immune response was occurring in the animals with BRD. The blood transcriptome of the BRD animals shows similarities to the transcriptome profiles obtained from lung and bronchial lymph nodes in other studies. This suggests that the blood transcriptome is a potential diagnostic tool for the identification of biomarkers of BRD infection and can be measured in live animals and used to further understand infection and disease in cattle. It may also provide a useful tool to increase the understanding of the genes involved in establishing BRD in beef cattle and be used to investigate potential therapeutic applications.

3.
Genomics ; 112(6): 3968-3977, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32650099

RESUMO

Bovine respiratory disease (BRD) is the most common disease in beef cattle and leads to considerable economic losses in both beef and dairy cattle. It is important to uncover the molecular mechanisms underlying BRD and to identify biomarkers for early identification of BRD cattle in order to address its impact on production and welfare. In this study, a longitudinal transcriptomic analysis was conducted using blood samples collected from 24 beef cattle at three production stages in the feedlot: 1) arrival (Entry group); 2) when identified as sick (diagnosed as BRD) and separated for treatment (Pulled); 3) prior to marketing (Close-out, representing healthy animals). Expressed genes were significantly different in the same animal among Entry, Pulled and Close-out stages (false discovery rate (FDR) < 0.01 & |Fold Change| > 2). Beef steers at both Entry and Pulled stages presented obvious difference in GO terms (FDR < 0.05) and affected biological functions (FDR < 0.05 & |Z-score| > 2) when compared with animals at Close-out. However, no significant functional difference was observed between Entry and Pulled animals. The interferon signaling pathway showed the most significant difference between animals at Entry/Pulled and Close-out stages (P < .001 & |Z-score| > 2), suggesting the animals initiated antiviral responses at an early stage of infection. Six key genes including IFI6, IFIT3, ISG15, MX1, and OAS2 were identified as biomarkers to predict and recognize sick cattle at Entry. A gene module with 169 co-expressed genes obtained from WGCNA analysis was most positively correlated (R = 0.59, P = 6E-08) with sickness, which was regulated by 11 transcription factors. Our findings provide an initial understanding of the BRD infection process in the field and suggests a subset of novel marker genes for identifying BRD in cattle at an early stage of infection.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Perfilação da Expressão Gênica , Doenças Respiratórias/veterinária , Animais , Estudos Longitudinais , Doenças Respiratórias/genética
4.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861518

RESUMO

Butyrate is a short-chain fatty acid by-product of the microbial fermentation of dietary fermentable materials in the large intestine; it is the main energy source for enterocyte regeneration, modulates the enteric microbial community, and contributes to increasing host health via mechanisms that are relatively poorly defined. Limited research has examined the therapeutic potential of butyrate using models of enteric inflammation incited by pathogenic organisms. We used Citrobacter rodentium to incite acute Th1/Th17 inflammation to ascertain the impact of butyrate on the host-microbiota relationship. Rectal administration of 140 mM butyrate to mice increased fecal concentrations of butyrate and increased food consumption and weight gain in mice infected with C. rodentium. Histological scores of colonic inflammation were lower in infected mice administered 140 mM butyrate. Expression of Il10, Tgfß, and Muc2 was elevated in noninfected mice administered butyrate in comparison to mice not administered butyrate. Infected mice administered butyrate displayed elevated expression of genes necessary for pathogen clearance (i.e., Il17A and Il1ß) and of genes involved in epithelial barrier repair and restoration (i.e., Relmß, Tff3, and Myd88). Butyrate supplemented to inflamed colons increased the abundances of Proteobacteria and Lachnospiraceae and reduced the abundance of Clostridiaceae species. Mice with enteritis that were administered butyrate also exhibited an increased abundance of mucus-associated bacteria. In summary, rectal administration of butyrate increased feed consumption and weight gain, ameliorated C. rodentium-induced cell injury through enhanced expression of immune regulation and tissue repair mechanisms, and increased the abundance of butyrate-producing bacteria in mice with enteritis. IMPORTANCE The study findings provide evidence that administration of butyrate in a dose-dependent manner can increase weight gain in infected mice, enhance clearance of the infection, reduce inflammation through altered cytokine expression, and enhance tissue repair and mucus secretion. Moreover, butyrate treatment also affected the abundance of bacterial populations in both noninflamed and inflamed intestines. Notably, this investigation provides foundational information that can be used to determine the effects of prebiotics and other functional foods on the production of butyrate by enteric bacteria and their impact on intestinal health and host well-being.

5.
Gut Pathog ; 8: 67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28031748

RESUMO

BACKGROUND: Identifying the connection among diet, the intestinal microbiome, and host health is currently an area of intensive research, but the potential of dietary fiber (DF) consumption to ameliorate intestinal inflammation has not been extensively studied. We examined the impacts of the DFs, wheat bran (WB) and resistant starch (RS) on host enteric health. A murine model of acute Th1/Th17 colitis (i.e. incited by Citrobacter rodentium) was used. RESULTS: Diets enriched with RS increased weight gain in mice inoculated with C. rodentium compared to mice consuming a conventional control (CN) diet. Short-chain fatty acid (SCFA) quantities in the cecum and distal colon were higher in mice consuming DFs, and these mice exhibited higher butyrate concentrations in the distal colon during inflammation. Histopathologic scores of inflammation in the proximal colon on day 14 post-inoculation (p.i.) (peak infection) and 21 p.i. (late infection) were lower in mice consuming DF-enriched diets compared to the CN diet. Consumption of WB reduced the expression of Th1/Th17 cytokines. As well, the expression of bacterial recognition and response genes such as Relmß, RegIIIγ, and Tlr4 increased in mice consuming the RS-enriched diets. Furthermore, each diet generated a region-specific bacterial community, suggesting a link between selection for specific bacterial communities, SCFA concentrations, and inflammation in the murine colon. CONCLUSIONS: Collectively, data indicated that the consumption of DF-rich diets ameliorates the effects of C. rodentium-induced enteritis by modifying the host microbiota to increase SCFA production, and bacterial recognition and response mechanisms to promote host health.

6.
Gut Pathog ; 7: 29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26561503

RESUMO

Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is necessary to answer the specific question being addressed regarding intestinal disease. Some incitants can induce acute responses in certain animal models while others can be used to induce chronic responses; this review aims to illustrate the strengths and weaknesses in each animal model and to guide the choice of an appropriate acute or chronic incitant to facilitate intestinal disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA