Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(10): 14733-14742, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34618319

RESUMO

Sewage sludge-derived biochars (SSBCs) were obtained at temperatures of 300, 500, and 700 °C to investigate the potentially toxic elements (PTEs) behaviors and assess the environmental acceptability for the possible application in the environment. Results indicated that PTEs exhibited diversely in the distribution of chemical speciation, while all elements tended to be immobilized in biochar matrix and the total amount elevated during the pyrolysis. The risk assessment of biochars implied a low degree of environmental risk for the utilization of SSBCs prepared at high temperatures. In addition, higher pyrolysis temperature alleviated the inhibition on the early seedling growth of Triticum aestivum L., with root elongation more sensitive to the biochar addition. PTEs, especially Cr, contributed much to the phytotoxicity of biochars as revealed by the principle component analysis (PCA) and leaner correlation analysis. Findings from this work illustrated that SSBCs prepared at higher temperatures might be more conductive to a wide range of applications with acceptable environmental risk.


Assuntos
Carvão Vegetal , Esgotos , Pirólise , Temperatura
2.
Huan Jing Ke Xue ; 40(1): 336-342, 2019 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628291

RESUMO

To accumulate endogenous polymers during the aerobic phase, the aerobic/anoxic-feast/famine (O/A-F/F) selection mode can be used. It can also be used in situ for endogenous denitrification by activated sludge during the anoxic phase. To further explore the effect of carbon sources on the activated sludge accumulation of endogenous polymers and endogenous denitrification, this study used acetic and glucose as the main carbon sources to investigate the accumulation of endogenous polymers, endogenous denitrification, and the structure and function of enriched activated sludge. The results show that acetic (Ac-SBR) and glucose (Gc-SBR) as the main carbon source systems achieved a 40 mg·L-1 nitrate removal by endogenous denitrification when the influent chemical oxygen demand (COD) was~500 mg·L-1 in the O/A-F/F selection mode. Both the Ac-SBR and Gc-SBR achieved partial denitrification, but the nitrite accumulation of the Ac-SBR was higher than that of the Gc-SBR. Acetic is favorable for the accumulation of endogenous polyhydroxyalkanoate (PHA); PHA drives the endogenous denitrification. The yield of PHA was 0.52 and the denitrification rate (DNR) was 9.65 mg·(L·h)-1. The Gc-SBR system achieved the simultaneous accumulation of PHA and glycogen (Gly). The yield of Gly was higher than that of PHA and the DNR driven by Gly was 4.35 mg·(L·h)-1. The Gly was the main driving force to achieve endogenous denitrification and contributed to 77% of the total nitrogen removal. The 16S rRNA high-throughput sequencing analysis of activated sludge flora shows that the class of ß-Proteobacteria in the Proteobacteria was dominant, with an abundance of 40.56% in the Ac-SBR. However, the abundance of ß-Proteobacteria was only 18.05% in the Gc-SBR. The class of α-Proteobacteria contributes to glycogen accumulation in the Gc-SBR. The PHA can be accumulated by ß-Proteobacteria, Unclassified Bacteroidetes, and Lgnavibacteria in the Ac-SBR.


Assuntos
Bactérias/classificação , Reatores Biológicos/microbiologia , Carbono/química , Desnitrificação , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio , Poli-Hidroxialcanoatos/análise , Polímeros/análise , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA