Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293123

RESUMO

Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques- a known mucin-degrader that remains poorly studied despite its implication in inflammatory bowel diseases (IBDs)- degrades mucin glycoproteins or their component O -linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong fucosidase, sialidase and ß1,4-galactosidase activities. There was a lack of detectable sulfatase and weak ß1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron . This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which may contribute to its association with IBD. Importance: An important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade different components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate particular species associated with bacterial mucus destruction and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another gut bacterium implicated in IBD, Bacteroides thetaiotaomicron . Our findings underscore the importance of understanding the mucin degradation mechanisms of different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately contribute to defects in mucus protection and could therefore be targets to prevent or treat IBD.

2.
Mol Cell Proteomics ; 22(12): 100684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993102

RESUMO

Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.


Assuntos
Fasciola hepatica , Animais , Humanos , Fasciola hepatica/fisiologia , Proteômica , Secretoma , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo
3.
Mol Cell Proteomics ; 22(9): 100635, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597722

RESUMO

Breast milk is abundant with functionalized milk oligosaccharides (MOs) to nourish and protect the neonate. Yet we lack a comprehensive understanding of the repertoire and evolution of MOs across Mammalia. We report ∼400 MO-species associations (>100 novel structures) from milk glycomics of nine mostly understudied species: alpaca, beluga whale, black rhinoceros, bottlenose dolphin, impala, L'Hoest's monkey, pygmy hippopotamus, domestic sheep, and striped dolphin. This revealed the hitherto unknown existence of the LacdiNAc motif (GalNAcß1-4GlcNAc) in MOs of all species except alpaca, sheep, and striped dolphin, indicating the widespread occurrence of this potentially antimicrobial motif in MOs. We also characterize glucuronic acid-containing MOs in the milk of impala, dolphins, sheep, and rhinoceros, previously only reported in cows. We demonstrate that these GlcA-MOs exhibit potent immunomodulatory effects. Our study extends the number of known MOs by >15%. Combined with >1900 curated MO-species associations, we characterize MO motif distributions, presenting an exhaustive overview of MO biodiversity.


Assuntos
Antílopes , Camelídeos Americanos , Golfinhos , Stenella , Humanos , Feminino , Recém-Nascido , Animais , Bovinos , Ovinos , Leite Humano , Oligossacarídeos
4.
Osteoarthr Cartil Open ; 5(3): 100380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37426292

RESUMO

Objective: To validate a quantitative high performance liquid chromatography (HPLC) assay for chondroitin sulfate (CS) and hyaluronic acid (HA) in synovial fluid, and to analyze glycan-patterns in patient samples. Design: Synovial fluid from osteoarthritis (OA, n â€‹= â€‹25) and knee-injury (n â€‹= â€‹13) patients, a synovial fluid pool (SF-control) and purified aggrecan, were chondroitinase digested and together with CS- and HA-standards fluorophore labelled prior to quantitative HPLC analysis. N-glycan profiles of synovial fluid and aggrecan were assessed by mass spectrometry. Results: Unsaturated uronic acid and sulfated-N-acetylgalactosamine (ΔUA-GalNAc4S and ΔUA-GalNAc6S) contributed to 95% of the total CS-signal in the SF-control sample. For HA and the CS variants in SF-control the intra- and inter-experiment coefficient of variation was between 3-12% and 11-19%, respectively; tenfold dilution gave recoveries between 74 and 122%, and biofluid stability test (room temperature storage and freeze-thaw cycles) showed recoveries between 81 and 140%. Synovial fluid concentrations of the CS variants ΔUA-GalNAc6S and ΔUA2S-GalNAc6S were three times higher in the recent injury group compared to the OA group, while HA was four times lower. Sixty-one different N-glycans were detected in the synovial fluid samples, but there were no differences in levels of N-glycan classes between patient groups. The CS-profile (levels of ΔUA-GalNAc4S and ΔUA-GalNAc6S) in synovial fluid resembled that of purified aggrecan from corresponding samples; the contribution to the N-glycan profile in synovial fluid from aggrecan was low. Conclusions: The HPLC-assay is suitable for analyzing CS variants and HA in synovial fluid samples, and the GAG-pattern differs between OA and recently knee injured subjects.

5.
Nat Commun ; 14(1): 1833, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005422

RESUMO

The mucolytic human gut microbiota specialist Akkermansia muciniphila is proposed to boost mucin-secretion by the host, thereby being a key player in mucus turnover. Mucin glycan utilization requires the removal of protective caps, notably fucose and sialic acid, but the enzymatic details of this process remain largely unknown. Here, we describe the specificities of ten A. muciniphila glycoside hydrolases, which collectively remove all known sialyl and fucosyl mucin caps including those on double-sulfated epitopes. Structural analyses revealed an unprecedented fucosidase modular arrangement and explained the sialyl T-antigen specificity of a sialidase of a previously unknown family. Cell-attached sialidases and fucosidases displayed mucin-binding and their inhibition abolished growth of A. muciniphila on mucin. Remarkably, neither the sialic acid nor fucose contributed to A. muciniphila growth, but instead promoted butyrate production by co-cultured Clostridia. This study brings unprecedented mechanistic insight into the initiation of mucin O-glycan degradation by A. muciniphila and nutrient sharing between mucus-associated bacteria.


Assuntos
Mucinas , Neuraminidase , Humanos , Mucinas/metabolismo , Neuraminidase/metabolismo , alfa-L-Fucosidase/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Fucose/metabolismo , Verrucomicrobia/metabolismo , Polissacarídeos/metabolismo , Muco/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(15): e2214558120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011203

RESUMO

The modern pattern of the Asian monsoon is thought to have formed around the Oligocene/Miocene transition and is generally attributed to Himalaya-Tibetan Plateau (H-TP) uplift. However, the timing of the ancient Asian monsoon over the TP and its response to astronomical forcing and TP uplift remains poorly known because of the paucity of well-dated high-resolution geological records from the TP interior. Here, we present a precession-scale cyclostratigraphic sedimentary section of 27.32 to 23.24 million years ago (Ma) during the late Oligocene epoch from the Nima Basin to show that the South Asian monsoon (SAM) had already advanced to the central TP (32°N) at least by 27.3 Ma, which is indicated by cyclic arid-humid fluctuations based on environmental magnetism proxies. A shift of lithology and astronomically orbital periods and amplified amplitude of proxy measurements as well as a hydroclimate transition around 25.8 Ma suggest that the SAM intensified at ~25.8 Ma and that the TP reached a paleoelevation threshold for enhancing the coupling between the uplifted plateau and the SAM. Orbital short eccentricity-paced precipitation variability is argued to be mainly driven by orbital eccentricity-modulated low-latitude summer insolation rather than glacial-interglacial Antarctic ice sheet fluctuations. The monsoon data from the TP interior provide key evidence to link the greatly enhanced tropical SAM at 25.8 Ma with TP uplift rather than global climate change and suggest that SAM's northward expansion to the boreal subtropics was dominated by a combination of tectonic and astronomical forcing at multiple timescales in the late Oligocene epoch.

7.
J Biol Chem ; 299(4): 103053, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813232

RESUMO

Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 ß-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.


Assuntos
Caenorhabditis elegans , beta-N-Acetil-Hexosaminidases , Animais , Acetilgalactosamina/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Caenorhabditis elegans/metabolismo , Glicosilação , Hexosaminidases/metabolismo , Metanol , Polissacarídeos/metabolismo
8.
Nat Commun ; 14(1): 995, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813782

RESUMO

The rising incidence of non-ST-segment elevation myocardial infarction (NSTEMI) and associated long-term high mortality constitutes an urgent clinical issue. Unfortunately, the study of possible interventions to treat this pathology lacks a reproducible pre-clinical model. Indeed, currently adopted small and large animal models of MI mimic only full-thickness, ST-segment-elevation (STEMI) infarcts, and hence cater only for an investigation into therapeutics and interventions directed at this subset of MI. Thus, we develop an ovine model of NSTEMI by ligating the myocardial muscle at precise intervals parallel to the left anterior descending coronary artery. Upon histological and functional investigation to validate the proposed model and comparison with STEMI full ligation model, RNA-seq and proteomics show the distinctive features of post-NSTEMI tissue remodelling. Transcriptome and proteome-derived pathway analyses at acute (7 days) and late (28 days) post-NSTEMI pinpoint specific alterations in cardiac post-ischaemic extracellular matrix. Together with the rise of well-known markers of inflammation and fibrosis, NSTEMI ischaemic regions show distinctive patterns of complex galactosylated and sialylated N-glycans in cellular membranes and extracellular matrix. Identifying such changes in molecular moieties accessible to infusible and intra-myocardial injectable drugs sheds light on developing targeted pharmacological solutions to contrast adverse fibrotic remodelling.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio sem Supradesnível do Segmento ST , Infarto do Miocárdio com Supradesnível do Segmento ST , Animais , Ovinos , Infarto do Miocárdio sem Supradesnível do Segmento ST/terapia , Vasos Coronários , Matriz Extracelular , Fatores de Risco
9.
J Biol Chem ; 299(3): 102923, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681125

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.


Assuntos
Glicoesfingolipídeos , Neoplasias Pancreáticas , Humanos , Cromatografia Líquida , Cromatografia em Camada Fina , Gangliosídeos/química , Glicoesfingolipídeos/análise , Glicoesfingolipídeos/química , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/fisiopatologia , Sulfoglicoesfingolipídeos/química , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/fisiopatologia , Espectrometria de Massas em Tandem , Biomarcadores Tumorais/metabolismo
10.
Mol Cell Proteomics ; 22(3): 100505, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717059

RESUMO

Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-ß-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following ß-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.


Assuntos
Caenorhabditis , Animais , Caenorhabditis/metabolismo , Fucose/metabolismo , Proteômica , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Caenorhabditis elegans/metabolismo , Polissacarídeos/metabolismo , Glicômica
11.
Commun Biol ; 5(1): 1365, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36509839

RESUMO

The ability of the zebrafish heart to regenerate following injury makes it a valuable model to deduce why this capability in mammals is limited to early neonatal stages. Although metabolic reprogramming and glycosylation remodeling have emerged as key aspects in many biological processes, how they may trigger a cardiac regenerative response in zebrafish is still a crucial question. Here, by using an up-to-date panel of transcriptomic, proteomic and glycomic approaches, we identify a metabolic switch from mitochondrial oxidative phosphorylation to glycolysis associated with membrane glycosylation remodeling during heart regeneration. Importantly, we establish the N- and O-linked glycan structural repertoire of the regenerating zebrafish heart, and link alterations in both sialylation and high mannose structures across the phases of regeneration. Our results show that metabolic reprogramming and glycan structural remodeling are potential drivers of tissue regeneration after cardiac injury, providing the biological rationale to develop novel therapeutics to elicit heart regeneration in mammals.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Miócitos Cardíacos/metabolismo , Proteômica , Glicólise , Mamíferos
12.
Front Mol Biosci ; 9: 942406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213120

RESUMO

The primary aim of the study was to identify inflammatory markers relevant for osteoarthritis (OA)-related systemic (plasma) and local (synovial fluid, SF) inflammation. From this, we looked for inflammatory markers that coincided with the increased amount of O-linked Tn antigen (GalNAcα1-Ser/Thr) glycan on SF lubricin. Inflammatory markers in plasma and SF in OA patients and controls were measured using a 44-multiplex immunoassay. We found consistently 29 markers detected in both plasma and SF. The difference in their concentration and the low correlation when comparing SF and plasma suggests an independent inflammatory environment in the two biofluids. Only plasma MCP-4 and TARC increased in our patient cohort compared to control plasma. To address the second task, we concluded that plasma markers were irrelevant for a direct connection with SF glycosylation. Hence, we correlated the SF-inflammatory marker concentrations with the level of altered glycosylation of SF-lubricin. We found that the level of SF-IL-8 and SF-MIP-1α and SF-VEGFA in OA patients displayed a positive correlation with the altered lubricin glycosylation. Furthermore, when exposing fibroblast-like synoviocytes from both controls and OA patients to glycovariants of recombinant lubricin, the secretion of IL-8 and MIP-1α and VEGFA were elevated using lubricin with Tn antigens, while lubricin with sialylated and nonsialylated T antigens had less or no measurable effect. These data suggest that truncated glycans of lubricin, as found in OA, promote synovial proinflammatory cytokine production and exacerbate local synovial inflammation.

13.
Mol Cell Proteomics ; 21(11): 100421, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182101

RESUMO

Helicobacter pylori colonizes the stomach of half of the human population. Most H. pylori are located in the mucus layer, which is mainly comprised by glycosylated mucins. Using mass spectrometry, we identified 631 glycans (whereof 145 were fully characterized and the remainder assigned as compositions) on mucins isolated from 14 Helicobacter spp.-infected and 14 Helicobacter spp.-noninfected stomachs. Only six identified glycans were common to all individuals, from a total of 60 to 189 glycans in each individual. An increased number of unique glycan structures together with an increased intraindividual diversity and larger interindividual variation were identified among O-glycans from Helicobacter spp.-infected stomachs compared with noninfected stomachs. H. pylori strain J99, which carries the blood group antigen-binding adhesin (BabA), the sialic acid-binding adhesin (SabA), and the LacdiNAc-binding adhesin, bound both to Lewis b (Leb)-positive and Leb-negative mucins. Among Leb-positive mucins, H. pylori J99 binding was higher to mucins from Helicobacter spp.-infected individuals than noninfected individuals. Statistical correlation analysis, binding experiments with J99 wt, and J99ΔbabAΔsabA and inhibition experiments using synthetic glycoconjugates demonstrated that the differences in H. pylori-binding ability among these four groups were governed by BabA-dependent binding to fucosylated structures. LacdiNAc levels were lower in mucins that bound to J99 lacking BabA and SabA than in mucins that did not, suggesting that LacdiNAc did not significantly contribute to the binding. We identified 24 O-glycans from Leb-negative mucins that correlated well with H. pylori binding whereof 23 contained α1,2-linked fucosylation. The large and diverse gastric glycan library identified, including structures that correlated with H. pylori binding, could be used to select glycodeterminants to experimentally investigate further for their importance in host-pathogen interactions and as candidates to develop glycan-based therapies.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Mucinas Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Helicobacter pylori/metabolismo , Polissacarídeos/metabolismo
15.
Nat Chem Biol ; 18(8): 841-849, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35710619

RESUMO

Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.


Assuntos
Microbioma Gastrointestinal , Sulfatases , Bactérias/metabolismo , Humanos , Polissacarídeos/química , Sulfatases/química , Sulfatos/química
16.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335136

RESUMO

Glycan biosynthesis simulation research has progressed remarkably since 1997, when the first mathematical model for N-glycan biosynthesis was proposed. An O-glycan model has also been developed to predict O-glycan biosynthesis pathways in both forward and reverse directions. In this work, we started with a set of O-glycan profiles of CHO cells transiently transfected with various combinations of glycosyltransferases. The aim was to develop a model that encapsulated all the enzymes in the CHO transfected cell lines. Due to computational power restrictions, we were forced to focus on a smaller set of glycan profiles, where we were able to propose an optimized set of kinetics parameters for each enzyme in the model. Using this optimized model we showed that the abundance of more processed glycans could be simulated compared to observed abundance, while predicting the abundance of glycans earlier in the pathway was less accurate. The data generated show that for the accurate prediction of O-linked glycosylation, additional factors need to be incorporated into the model to better reflect the experimental conditions.


Assuntos
Polissacarídeos , Animais , Células CHO , Simulação por Computador , Cricetinae , Cricetulus , Glicosilação , Polissacarídeos/metabolismo
17.
J Biol Chem ; 298(4): 101732, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35176282

RESUMO

Changes in glycosphingolipid structures have been shown to occur during the development of several types of human cancers, generating cancer-specific carbohydrate structures that could be used as biomarkers for diagnosis and therapeutic targeting. In this study, we characterized nonacid glycosphingolipids isolated from a human gastric adenocarcinoma by mass spectrometry, enzymatic hydrolysis, and by binding with a battery of carbohydrate-recognizing ligands. We show that the majority of the complex nonacid glycosphingolipids had type 2 (Galß4GlcNAc) core chains (neolactotetraosylceramide, the Lex, H type 2, x2, and the P1 pentaosylceramides, and the Ley, A type 2, and neolacto hexaosylceramides). We also found glycosphingolipids with type 1 (Galß3GlcNAc) core (lactotetraosylceramide and the H type 1 pentaosylceramide) and globo (GalαGal) core chains (globotriaosylceramide and globotetraosylceramide). Interestingly, we characterized two complex glycosphingolipids as a P1 heptaosylceramide (Galα4Galß4GlcNAcß3Galß4GlcNAcß3Gal ß4Glcß1Cer) and a branched P1 decaosylceramide (Galα4Gal ß4GlcNAcß3(Galα4Galß4GlcNAcß6)Galß4GlcNAcß3Galß4Glc ß1Cer). These are novel glycosphingolipid structures and the first reported cases of complex glycosphingolipids larger than pentaosylceramide carrying the P1 trisaccharide. We propose that these P1 glycosphingolipids may represent potential biomarkers for the early diagnosis of gastric cancer.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/diagnóstico , Biomarcadores , Carboidratos , Glicoesfingolipídeos/metabolismo , Humanos , Neoplasias Gástricas/diagnóstico
18.
Nature ; 598(7880): 332-337, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616040

RESUMO

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Assuntos
Bacteroides/enzimologia , Colo/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Mucinas/metabolismo , Sulfatases/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animais , Colo/química , Cristalografia por Raios X , Feminino , Galactose/metabolismo , Humanos , Masculino , Camundongos , Modelos Moleculares , Especificidade por Substrato , Sulfatases/química
19.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638800

RESUMO

Medullary thyroid carcinoma (MTC) accounts for only 1-2% of thyroid cancers; however, metastatic MTC is a mortal disease with no cure. In this study, glycosphingolipids were isolated from human MTCs and characterized by mass spectrometry and binding of carbohydrate recognizing ligands. The tissue distribution of selected compounds was investigated by immunohistochemistry. The amount of acid glycosphingolipids in the MTCs was higher than in the normal thyroid glands. The major acid glycosphingolipid was the GD3 ganglioside. Sulfatide and the gangliosides GM3 and GD1a were also present. The majority of the complex non-acid glycosphingolipids had type 2 (Galß4GlcNAc) core chains, i.e., the neolactotetraosylceramide, the Lex, H type 2 and x2 pentaosylceramides, the Ley and A type 2 hexaosylceramides, and the A type 2 heptaosylceramide. There were also compounds with globo (GalαGalß4Glc) core, i.e., globotriaosylceramide, globotetraosylceramide, the Forssman pentaosylceramide, and the Globo H hexaosylceramide. Immunohistochemistry demonstrated an extensive expression av Ley in the MTC cells and also a variable intensity and prevalence of Globo H and Lex. One individual with multiple endocrine neoplasia type 2B expressed the Forssman determinant, which is rarely found in humans. This study of human MTC glycosphingolipids identifies glycans that could serve as potential tumor-specific markers.


Assuntos
Carcinoma Neuroendócrino/metabolismo , Glicoesfingolipídeos/isolamento & purificação , Neoplasias da Glândula Tireoide/metabolismo , Biomarcadores Tumorais/análise , Carcinoma Neuroendócrino/diagnóstico , Glicoesfingolipídeos/análise , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico
20.
Mol Cell Proteomics ; 20: 100150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34555499

RESUMO

Despite sulfated O-linked glycans being abundant on ovarian cancer (OC) glycoproteins, their regulation during cancer development and involvement in cancer pathogenesis remain unexplored. We characterized O-glycans carrying sulfation on galactose residues and compared their expression with defined sulfotransferases regulated during OC development. Desialylated sulfated oligosaccharides were released from acidic glycoproteins in the cyst fluid from one patient with a benign serous cyst and one patient with serous OC. Oligosaccharides characterized by LC-MSn were identified as core 1 and core 2 O-glycans up to the size of decamers and with 1 to 4 sulfates linked to GlcNAc residues and to C-3 and/or C-6 of Gal. To study the specificity of the potential ovarian sulfotransferases involved, Gal3ST2 (Gal-3S)-, Gal3ST4 (Gal-3S)-, and CHST1 (Gal-6S)-encoding expression plasmids were transfected individually into CHO cells also expressing the P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b (PSGL-1/mIg G2b) fusion protein and the human core 2 transferase (GCNT1). Characterization of the PSGL-1/mIg G2b O-glycans showed that Gal3ST2 preferentially sulfated Gal on the C-6 branch of core 2 structures and Gal3ST4 preferred Gal on the C-3 branch independently if core-1 or -2. CHST1 sulfated Gal residues on both the C-3 (core 1/2) and C-6 branches of core 2 structures. Using serous ovarian tissue micro array, Gal3ST2 was found to be decreased in tissue classified as malignant compared with tissues classified as benign or borderline, with the lowest expression in poorly differentiated malignant tissue. Neither Gal3ST4 nor CHST1 was differentially expressed in benign, borderline, or malignant tissue, and there was no correlation between expression level and differentiation stage. The data displays a complex sulfation pattern of O-glycans on OC glycoproteins and that aggressiveness of the cancer is associated with a decreased expression of the Gal3ST2 transferase.


Assuntos
Adenoma/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ovarianas/metabolismo , Polissacarídeos/metabolismo , Sulfotransferases/metabolismo , Animais , Células CHO , Cricetulus , Feminino , Humanos , Mucinas/metabolismo , Sulfatos/metabolismo , Sulfotransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA