Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 11057-11065, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048278

RESUMO

In the realm of two-dimensional (2D) crystal growth, the chemical composition often determines the thermodynamically favored crystallographic structures. This relationship poses a challenge in synthesizing novel 2D crystals without altering their chemical elements, resulting in the rarity of achieving specific crystallographic symmetries or lattice parameters. We present 2D polymorphic FeAs crystals that completely differ from bulk orthorhombic FeAs (Pnma), differing in the stacking sequence, i.e., polytypes. Preparing polytypic FeAs outlines a strategy for independently controlling each symmetry operator, which includes the mirror plane for 2Q-FeAs (I4/mmm) and the glide plane for 1Q-FeAs (P4/nmm). As such, compared to bulk FeAs, polytypic 2D FeAs shows highly anisotropic properties such as electrical conductivity, Young's modulus, and friction coefficient. This work represents a concept of expanding 2D crystal libraries with a given chemical composition but various crystal symmetries.

2.
Aging Dis ; 14(6): 2193-2214, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199590

RESUMO

Increasing evidence has shown that gut dysbacteriosis may play a crucial role in neuroinflammation in Parkinson's disease (PD). However, the specific mechanisms that link gut microbiota to PD remain unexplored. Given the critical roles of blood-brain barrier (BBB) dysfunction and mitochondrial dysfunction in the development of PD, we aimed to evaluate the interactions among the gut microbiota, BBB, and mitochondrial resistance to oxidation and inflammation in PD. We investigated the effects of fecal microbiota transplantation (FMT) on the physiopathology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. The aim was to explore the role of fecal microbiota from PD patients and healthy human controls in neuroinflammation, BBB components, and mitochondrial antioxidative capacity via the AMPK/SOD2 pathway. Compared to control mice, MPTP-treated mice exhibited elevated levels of Desulfovibrio, whereas mice given FMT from PD patients exhibited enriched levels of Akkermansia and mice given FMT from healthy humans showed no significant alterations in gut microbiota. Strikingly, FMT from PD patients to MPTP-treated mice significantly aggravated motor impairments, dopaminergic neurodegeneration, nigrostriatal glial activation and colonic inflammation, and inhibited the AMPK/SOD2 signaling pathway. However, FMT from healthy human controls greatly improved the aforementioned MPTP-caused effects. Surprisingly, the MPTP-treated mice displayed a significant loss in nigrostriatal pericytes, which was restored by FMT from healthy human controls. Our findings demonstrate that FMT from healthy human controls can correct gut dysbacteriosis and ameliorate neurodegeneration in the MPTP-induced PD mouse model by suppressing microgliosis and astrogliosis, ameliorating mitochondrial impairments via the AMPK/SOD2 pathway, and restoring the loss of nigrostriatal pericytes and BBB integrity. These findings raise the possibility that the alteration in the human gut microbiota may be a risk factor for PD and provide evidence for potential application of FMT in PD preclinical treatment.

3.
Neurobiol Dis ; 170: 105750, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580816

RESUMO

Cerebral small vessel disease (CSVD) is a generic term used for intracranial vascular disorders caused by the structural changes of cerebral microvessels, including the small arteries, arterioles, capillaries and venules. CSVD exhibits various neuroimaging features and is associated clinical characteristics. Although CSVD is recognized as the leading cause of vascular cognitive impairment (VCI), the underlying mechanism(s) remains elusive. Growing evidence indicates a significant association between altered neurovascular unit (NVU) functioning and the pathophysiology of evolving CSVD-induced VCI. Therefore, research is required to understand how NVU dysregulation contributes to cognitive impairment due to CSVD. In this review, we describe the link between the neuroimaging focal lesions and cognitive alterations. We also discuss the potential pathological role of NVU dysregulation in the entry of pathogens from the blood into the parenchyma by altering the blood-brain barrier (BBB), affecting the cerebral microvascular and consequently cause VCI. Next, we review the coupling of neural activity with cerebral blood flow to control the microvascular perfusion; and the disrupted clearance of metabolic byproducts with CSF-ISF exchange via perivascular pathways and glymphatic system. Finally, we discussed the possible therapeutic interventions in CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Sistema Glinfático , Doenças de Pequenos Vasos Cerebrais/patologia , Disfunção Cognitiva/etiologia , Sistema Glinfático/patologia , Humanos , Microcirculação , Neuroimagem
4.
Front Immunol ; 12: 794770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925379

RESUMO

Background: Neuroinflammation and mitochondrial impairment play important roles in the neuropathogenesis of Parkinson's disease (PD). The activation of NLRP3 inflammasome and the accumulation of α-synuclein (α-Syn) are strictly correlated to neuroinflammation. Therefore, the regulation of NLRP3 inflammasome activation and α-Syn aggregation might have therapeutic potential. It has been indicated that Dl-3-n-butylphthalide (NBP) produces neuroprotection against some neurological diseases such as ischemic stroke. We here intended to explore whether NBP suppressed NLRP3 inflammasome activation and reduced α-Syn aggregation, thus protecting dopaminergic neurons against neuroinflammation. Methods: In our study, we established a MPTP-induced mouse model and 6-OHDA-induced SH-SY5Y cell model to examine the neuroprotective actions of NBP. We then performed behavioral tests to examine motor dysfunction in MPTP-exposed mice after NBP treatment. Western blotting, immunofluorescence staining, flow cytometry and RT-qPCR were conducted to investigate the expression of NLRP3 inflammasomes, neuroinflammatory cytokines, PARP1, p-α-Syn, and markers of microgliosis and astrogliosis. Results: The results showed that NBP exerts a neuroprotective effect on experimental PD models. In vivo, NBP ameliorated behavioral impairments and reduced dopaminergic neuron loss in MPTP-induced mice. In vitro, treatment of SH-SY5Y cells with 6-OHDA (100uM,24 h) significantly decreased cell viability, increased intracellular ROS production, and induced apoptosis, while pretreatment with 5uM NBP could alleviated 6-OHDA-induced cytotoxicity, ROS production and cell apoptosis to some extent. Importantly, both in vivo and in vitro, NBP suppressed the activation of the NLRP3 inflammasome and the aggregation of α-Syn, thus inhibited neuroinflammation ameliorated mitochondrial impairments. Conclusions: In summary, NBP rescued dopaminergic neurons by reducing NLRP3 inflammasome activation and ameliorating mitochondrial impairments and increases in p-α-Syn levels. This current study may provide novel neuroprotective mechanisms of NBP as a potential therapeutic agent.


Assuntos
Benzofuranos/uso terapêutico , Neurônios Dopaminérgicos/fisiologia , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Agregação Patológica de Proteínas , alfa-Sinucleína/metabolismo
5.
Aging Dis ; 12(7): 1741-1752, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34631218

RESUMO

Progranulin (GRN) mutations are a major cause of frontotemporal dementia (FTD); the spectrum of clinical phenotypes of FTD is much more extensive than previously reported. The frequency and locations of GRN mutations in Chinese patients with FTD remain uncertain. We performed cDNA sequencing in one sporadic male patient who initially presented FTD symptoms. Brain magnetic resonance imaging (MRI) and positron emission computed tomography/computed tomography (PET/CT) were applied to further confirm the diagnosis of FTD from this patient. Cellular apoptosis and survival test were performed to identify the function of GRN. We identified one novel missense GRN mutation (c.1498G>A, p.V500I) in this patient, who initially presented typical behavioral-variant frontotemporal dementia (bvFTD) features but then presented progressive supranuclear palsy (PSP) clinical characteristics 5 years after onset. Besides, WT GRN protein showed an adequate trophic stimulus to preserve the survival of SH-SY5Y cells in the medium free of serum, while GRN mutation (c.1498G>A, p.V500I) may impair the ability of supporting cell survival. This study owns significant implications for genetic counseling and clinical heterogeneity. We illustrate the fact that FTD presenting features of bvFTD and PSP in one patient could be considered as a specific phenotype in patients with GRN mutations. GRN p.V500I led to the neuronal degeneration in vitro; this finding provides a significant evidence that this mutation may be a new causative mutation in patients with FTD.

7.
Nano Lett ; 21(12): 5345-5352, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34097829

RESUMO

The quest for safe and high-performance Li ion batteries (LIBs) motivates intense efforts seeking a high-energy but reliable anode, cathode, and nonflammable electrolyte. For any of these, exploring new electrochemistry methods that enhance safety and performance by employing well-designed electrodes and electrolytes are required. Electrolyte wetting, governed by thermodynamics, is another critical issue in increasing Li ion transport through the separator. Herein, we report an approach to enhancing LIB performance by applying mechanical resonant vibration to increase electrolyte wettability on the separator. Wetting is activated at a resonant frequency with a capillary wave along the surface of the electrolyte, allowing the electrolyte to infiltrate into the porous separator by inertia force. This mechanical resonance, rather than electrochemistry, leads to the high specific capacity, rate capability, and cycling stability of LIBs. The concept of the mechanical approach is a promising yet simple strategy for the development of safer LIBs using liquid electrolytes.

8.
Nat Commun ; 12(1): 47, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397938

RESUMO

Controlling ion transport in nanofluidics is fundamental to water purification, bio-sensing, energy storage, energy conversion, and numerous other applications. For any of these, it is essential to design nanofluidic channels that are stable in the liquid phase and enable specific ions to pass. A human neuron is one such system, where electrical signals are transmitted by cation transport for high-speed communication related to neuromorphic computing. Here, we present a concept of neuro-inspired energy harvesting that uses confined van der Waals crystal and demonstrate a method to maximise the ion diffusion flux to generate an electromotive force. The confined nanochannel is robust in liquids as in neuron cells, enabling steady-state ion diffusion for hundred of hours and exhibiting ion selectivity of 95.8%, energy conversion efficiency of 41.4%, and power density of 5.26 W/m2. This fundamental understanding and rational design strategy can enable previously unrealisable applications of passive-type large-scale power generation.

9.
Nat Commun ; 11(1): 805, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041949

RESUMO

Photolithography is the prevalent microfabrication technology. It needs to meet resolution and yield demands at a cost that makes it economically viable. However, conventional far-field photolithography has reached the diffraction limit, which imposes complex optics and short-wavelength beam source to achieve high resolution at the expense of cost efficiency. Here, we present a cost-effective near-field optical printing approach that uses metal patterns embedded in a flexible elastomer photomask with mechanical robustness. This technique generates sub-diffraction patterns that are smaller than 1/10th of the wavelength of the incoming light. It can be integrated into existing hardware and standard mercury lamp, and used for a variety of surfaces, such as curved, rough and defect surfaces. This method offers a higher resolution than common light-based printing systems, while enabling parallel-writing. We anticipate that it will be widely used in academic and industrial productions.

10.
Nano Lett ; 19(12): 8811-8820, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31771329

RESUMO

Wetting Na metal on the solid electrolyte of a liquid Na battery determines the operating temperature and performance of the battery. At low temperatures below 200 °C, liquid Na wets poorly on a solid electrolyte near its melting temperature (Tm = 98 °C), limiting its suitability for use in low-temperature batteries used for large-scale energy-storage systems. Herein, we propose the use of sparked reduced graphene oxide (rGO) that can improve the Na wetting in sodium-beta alumina batteries (NBBs), allowing operation at lower temperatures. Experimental and computational studies indicated rGO layers with nanogaps exhibited complete liquid Na wetting regardless of the surface energy between the liquid Na and the graphene oxide, which originated from the capillary force in the gap. Employing sparked rGO significantly enhanced the cell performance at 175 °C; the cell retained almost 100% Coulombic efficiency after the initial cycle, which is a substantial improvement over cells without sparked rGO. These results suggest that coating sparked rGO is a promising but simple strategy for the development of low-temperature NBBs.

11.
ACS Appl Mater Interfaces ; 11(3): 2917-2924, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30580514

RESUMO

Wetting of the liquid metal on the solid electrolyte of a liquid metal battery controls the operating temperature and performance of the battery. Liquid sodium electrodes are particularly attractive because of their low cost, natural abundance, and geological distribution. However, they wet poorly on a solid electrolyte near its melting temperature, limiting their widespread suitability for low-temperature batteries to be used for large-scale energy storage systems. Herein, we develop an isolated metal-island strategy that can improve sodium wetting in sodium-beta alumina batteries that allows operation at lower temperatures. Our results suggest that in situ heat treatment of a solid electrolyte followed by bismuth deposition effectively eliminates oxygen and moisture from the surface of the solid electrolyte, preventing the formation of an oxide layer on the liquid sodium, leading to enhanced wetting. We also show that employing isolated bismuth islands significantly improves cell performance, with cells retaining 94% of their charge after the initial cycle, an improvement over cells without bismuth islands. These results suggest that coating isolated metal islands is a promising and straightforward strategy for the development of low-temperature sodium-ß alumina batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA