Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Acta Pharmacol Sin ; 45(11): 2229-2240, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39020084

RESUMO

Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Neoplasias , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos
2.
Theranostics ; 14(10): 4090-4106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994016

RESUMO

Purpose: Due to intrinsic defensive response, ferroptosis-activating targeted therapy fails to achieve satisfactory clinical benefits. Though p62-Keap1-Nrf2 axis is activated to form a negative feedback loop during ferroptosis induction, how p62 is activated remains largely unknown. Methods: MTS assay was applied to measure cell growth. Lipid ROS was detected with C11-BODIPY reagent by flow cytometer. Quantitative real-time PCR (qPCR) and western blotting were performed to determine mRNA and protein level. Immunofluorescence (IF) was performed to examine the distribution of proteins. Fluorescence recovery after photobleaching (FRAP) was adopted to evaluate p62 phase separation. Immunoprecipitation (IP), co-IP and Proximal ligation assay (PLA) were performed to detected protein posttranslational modifications and protein-protein interactions. Tumor xenograft model was employed to inspect in vivo growth of pancreatic cancer cells. Results: Upon ferroptosis induction, Nuclear Factor E2 Related Factor 2 (Nrf2) protein and its downstream genes such as HMOX1 and NQO1 were upregulated. Knockdown of p62 significantly reversed Nrf2 upregulation and Keap1 decrease after ferroptosis induction. Knockdown of either p62 or Nrf2 remarkably sensitized ferroptosis induction. Due to augmented p62 phase separation, formation of p62 bodies were increased to recruit Keap1 after ferroptosis induction. Protein arginine methyltransferase 6 (PRMT6) mediated asymmetric dimethylarginine (ADMA) of p62 to increase its oligomerization, promoting p62 phase separation and p62 body formation. Knockdown of p62 or PRMT6 notably sensitized pancreatic cancer cells to ferroptosis both in vitro and in vivo through suppressing Nrf2 signaling. Conclusion: During ferroptosis induction, PRMT6 mediated p62 ADMA to promote its phase separation, sequestering Keap1 to activate Nrf2 signaling and inhibit ferroptosis. Therefore, targeting PRMT6-mediated p62 ADMA could be a new option to sensitize ferroptosis for cancer treatment.


Assuntos
Arginina , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Animais , Arginina/metabolismo , Arginina/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Retroalimentação Fisiológica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Camundongos Nus , Transdução de Sinais , Separação de Fases , Proteínas de Ligação a RNA
3.
Mol Cell Biochem ; 479(11): 3037-3047, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38145448

RESUMO

The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.


Assuntos
Proteínas de Transporte , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Gefitinibe , MicroRNAs , Proteínas dos Microfilamentos , Inibidores de Proteínas Quinases , Fator de Transcrição STAT3 , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Gefitinibe/farmacologia , Feminino , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Linhagem Celular Tumoral , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Inibidores de Proteínas Quinases/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Neoplásico/biossíntese
4.
Am J Cancer Res ; 13(11): 5698-5718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058833

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent cancer with limited effective treatments. Eribulin mesylate is a novel chemotherapy drug that inhibits microtubule elongation and may impact the tumor microenvironment and immune pathway. This study aims to investigate the impact of changes in microtubule acetylation levels on HCC development and treatment outcomes. Clinical and molecular data were aggregated from databases, with survival analysis conducted to evaluate the relevance of microtubule acetylation. In vitro experiments using HCC cell lines and a tumor cell transplantation model in C57BL/c mice were performed to investigate the effects of microtubule acetylation on Eribulin treatment. A significant correlation was found between the level of lysine 40 acetylation of α-tubulin (acetyl-α-tubulin-lys40) and overall survival of HCC patients, with a better prognosis associated with a lower level of acetyl-α-tubulin-lys40. Knocking down ATAT1 or overexpressing HDAC6 reduced the level of acetyl-α-tubulin-lys40 and sensitized Eribulin treatment both in vitro and in vivo. In summary, acetyl-α-tubulin-lys40 was increased in HCC and was associated with a shorter overall survival of HCC patients. Reducing the level of acetyl-α-tubulin-lys40 can enhance sensitivity to Eribulin treatment both in vitro and in vivo, thereby establishing acetyl-α-tubulin-lys40 as a potential prognostic marker and predictive indicator for Eribulin treatment in HCC patients.

5.
Int J Biol Sci ; 19(12): 3694-3708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564210

RESUMO

Golgi-protein 73 (GP73) is highly expressed in hepatocellular carcinoma (HCC) and, as a secretory protein, it has been proposed as a serum biomarker indicating progression of HCC. The underlying mechanism by which GP73 may promote HCC metastasis is still poorly understood. In this study, we discovered that GP73 interacted with vimentin to facilitate Serine/Threonine-protein phosphatase PP1-alpha (PP1A)-mediated dephosphorylation of vimentin at S56 and facilitated vimentin polymerization, which blocked vimentin degradation via TRIM56-mediated ubiquitin/proteasome-dependent pathway. Strikingly, Clomipramine, a 5-hydroxytryptamine receptor (5-HTR) agonist approved for the treatment of depression, impaired GP73-mediated vimentin polymerization to effectively inhibit metastasis of HCC with high GP73 expression, which provided a new strategy against HCC metastasis. Lastly, it was found that serum GP73 (sGP73) correlated positively with vimentin in primary tissues of HCC, suggesting that sGP73 might serve as a potential serum biomarker for companion diagnosis of HCC with highly expressed vimentin. In summary, this study reveals the process of GP73-mediated vimentin polymerization and proves that Clomipramine serves as a potential drug targeting vimentin for metastatic HCC patients with high sGP73 level.

6.
J Cancer Res Clin Oncol ; 149(15): 14205-14225, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558766

RESUMO

PURPOSE: Breast cancer (BRCA) is a prevalent tumor worldwide. The association between the coiled-coil domain-containing (CCDC) protein family and different tumors has been established. However, the prognostic significance of this protein family in breast cancer remains uncertain. METHODS: Gene expression and clinical data were obtained from the TCGA, METABRIC, and GEO databases. Prognosis genes were identified using univariate Cox and LASSO Cox regression, leading to the establishment of a prognostic signature. Subsequently, the risk model was conducted based on survival and clinical feature analyses, and a nomogram for prognosis prediction was developed. Furthermore, analyses of biological function, immune characteristics, and drug sensitivity were performed. Finally, single-cell sequencing data were utilized to uncover the expression patterns of genes in the risk model. RESULTS: Five genes were identified and utilized for risk modeling. The model demonstrated excellent prognostic value as indicated by ROC and Kaplan-Meier analysis. The high-risk group exhibited shorter survival time and higher likelihood of recurrence. Functional annotation indicated a correlation between the risk score and immune pathways. Conversely, the low-risk group displayed a greater enrichment in immune pathways and exhibited more active immune microenvironment characteristics. Additionally, drug sensitivity analysis using both public and our sequencing data revealed that the risk model possessed a broad range of predictive values. CONCLUSIONS: We have developed a gene signature and have verified that patients with low-risk are more likely to have better prognosis and respond positively to therapy. This finding offers a valuable point of reference for BRCA individualized treatment.

7.
Clin Transl Med ; 13(7): e1337, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37477089

RESUMO

BACKGROUND: Energy balance has long been known to extend lifespans and inhibit carcinogenesis in multiple species by slowing age-related epigenetic changes while the underlying mechanisms remain largely unknown. Herein, we found that starvation activated autophagy to remodel the DNA methylation profile by inhibiting DNMT3a expression. METHODS: Illumina Infinium MethylationEPIC BeadChip and dot blot assay were performed to quantify the global DNA methylation level. Protein-RNA interactions were validated through RNA immunoprecipitation and RNA pull-down assay. In vitro and in vivo experiments were carried out to testify the effect of DNMT3a on chemoresistance. RESULTS: Autophagy is impaired in chemoresistance which was associated with differential DNA methylation and could be reversed by DNMT3a inhibition. Autophagy activation decreases the expression of DNMT3a mRNA, accompanied with the downregulation of chemoresistance-related Linc00942. Knockdown of Linc00942 reduces DNMT3a expression and genome-wide DNA methylation while Linc00942 overexpression increased DNMT3a expression and correlated hypermethylation in cancer cells and primary tumour tissues. Mechanistically, Linc00942 recruits RNA methyltransferase METTL3 to stimulate N6-methyladenosine (m6A) deposit on DNMT3a transcripts, triggering IGF2BP3/HuR to recognize modified mRNA for reinforced stability. SQSTM1/p62 recruits Linc00942 for autophagic degradation which can be abrogated after autophagy inhibition by p62 knockdown or chloroquine treatment. CONCLUSIONS: Inhibition of autophagy increases Linc00942 expression to promote chemoresistance and autophagy activation or hypomethylating agent decitabine restores chemosensitivity by reducing global DNA methylation. Overall, this study identifies a novel methylation cascade linking impaired RNautophagy to global hypermethylation in chemoresistance, and provides a rationale for repurposing decitabine to overcome chemoresistance in cancer treatment.


Assuntos
Metilação de DNA , Neoplasias Gástricas , Humanos , Metilação de DNA/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Decitabina , RNA , RNA Mensageiro , Metiltransferases/genética
8.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298343

RESUMO

Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent cancers, and PANoptosis is a distinct, inflammatory-programmed cell death regulated by the PANoptosome. The essential regulators of cancer occurrence and progression are microRNAs (miRNAs). However, the potential function of PANoptosis-related microRNAs (PRMs) in ccRCC remains obscure. This study retrieved ccRCC samples from The Cancer Genome Atlas database and three Gene Expression Omnibus datasets. PRMs were recognized based on previous reports in the scientific literature. Regression analyses were used to identify the prognosis PRMs and construct a PANoptosis-related miRNA prognostic signature based on the risk score. We discovered that high-risk patients had poorer survival prognoses and were significantly linked to high-grade and advanced-stage tumors, using a variety of R software packages and web analysis tools. Furthermore, we demonstrated that the low-risk group had significant changes in their metabolic pathways. In contrast, the high-risk group was characterized by high immune cell infiltration, immune checkpoint expression, and low half-maximum inhibition concentration (IC50) values of chemotherapeutic agents. This suggests that high-risk patients may benefit more from immunotherapy and chemotherapy. In conclusion, we constructed a PANoptosis-related microRNA signature and revealed its potential significance in clinicopathological features and tumor immunity, thereby providing new precise treatment strategies.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma de Células Renais/genética , Apoptose , Neoplasias Renais/genética
9.
J Exp Clin Cancer Res ; 42(1): 142, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277863

RESUMO

INTRODUCTION: Cuproptosis and ferroptosis are the two newly defined metal-related regulated cell death. However, the crosstalk between cuproptosis and ferroptosis is obscure. MATERIALS AND METHODS: We analyzed the effect of ferroptosis inducers on copper ionophores-induced cell death through CCK-8 assay. Cuproptosis was studied using immunofluorescence and protein soluble-insoluble fraction isolation. GSH assay, qRT-PCR and western blot were adopted to explore the machinery of ferroptosis inducers enhanced cuproptosis. And mouse xenograft model was built to detect the synergy effect of elesclomol-Cu and sorafenib in vivo. RESULTS: Herein we found that ferroptosis inducers sorafenib and erastin could enhance cuproptosis in primary liver cancer cells by increasing copper dependent lipoylated protein aggregation. Mechanically, sorafenib and erastin upregulated protein lipoylation via suppressing mitochondrial matrix-related proteases mediated ferredoxin 1 (FDX1) protein degradation, and reduced intracellular copper chelator glutathione (GSH) synthesis through inhibiting cystine importing. DISCUSSION/CONCLUSION: Our findings proposed that combination of ferroptosis inducers and copper ionophores to co-targeting ferroptosis and cuproptosis could be a novel therapeutic strategy for primary liver cancer.


Assuntos
Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Cobre , Sorafenibe , Modelos Animais de Doenças , Ionóforos , Neoplasias Hepáticas/genética , Apoptose
10.
Theranostics ; 13(6): 1892-1905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064870

RESUMO

Regulatory T cells (Tregs) are critical for generating and maintaining peripheral tolerance. Treg-based immunotherapy is valuable for the clinical management of diseases resulting from dysregulation of immune tolerance. However, the lack of potency is a potential limitation of Treg therapy. In addition, CD69 positive-Treg (CD69+ Treg) represent a newly identified subset of Tregs with potent immune suppressive capability. Methods: Foxp3 YFP-Cre CD69 fl/fl and CD4 Cre CD69 fl/fl mice were generated to determine the relevance of CD69 to Treg. Chromatin Immunoprecipitation Assay (ChIP) and luciferase Assay were performed to detect the regulation of CD69 transcription by heat shock transcription factor 1(HSF1). Gene expression was measured by western blotting and qRT-PCR. The differentiation of naive T cells to CD69+Foxp3+ iTregs was determined by flow cytometry. The immunosuppressive ability of Tregs was analyzed by ELISA and flow cytometry. Colon inflammation in mice was reflected by changes in body weight and colon length, the disease activity index (DAI), and H&E staining of colon tissues. Results: Induced Tregs (iTregs) from CD4 Cre CD69 fl/fl mice failed to alleviate colitis. The transcription factor HSF1 interacted with the promoter of the CD69 gene to prompt its transcription during Treg differentiation. Genetic and chemical inhibition of HSF1 impaired CD69+ Treg differentiation and promoted the pathogenesis of colitis in mice. In contrast, HSF1 protein stabilized by inhibiting its proteasomal degradation promoted CD69+ Treg differentiation and alleviated colitis in mice. Moreover, adoptive transfer of iTregs with HSF1 stabilization by proteasome inhibitor (PSI) dramatically prevented the development of colitis in mice and was accompanied by decreased production of pro-inflammatory cytokines and reduced accumulation of pro-inflammatory lymphocytes in colitis tissue, whereas Tregs induced in the absence of PSI were less stable and ineffective in suppressing colitis. Conclusions: HSF1 promotes CD69+ Tregs differentiation by activating the CD69 transcription, which is critical for the immunosuppressive function of Tregs. Stabilization of HSF1 by PSIs results in the efficient generation of Tregs with high potency to treat colitis and probably other autoimmune diseases involving Tregs deficiency.


Assuntos
Colite , Linfócitos T Reguladores , Camundongos , Animais , Fatores de Transcrição de Choque Térmico/metabolismo , Colite/patologia , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL
11.
Am J Cancer Res ; 13(12): 6210-6225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187046

RESUMO

Estrogen receptor positive (ER+) breast cancer patients exhibit poorer responsiveness to nab-paclitaxel compared to ER negative (ER-) patients, with the underlying mechanisms remaining unknown. Caveolin 1 (CAV1) is a membrane invagination protein critical for the endocytosis of macromolecules including albumin-bound chemotherapeutic agents. Here, we demonstrate that ERα limits the efficacy of nab-paclitaxel in breast cancer cells while genetic or pharmacological inhibition of ERα increased the sensitivity of ER+ breast cancer cells to nab-paclitaxel. Notably, CAV1 expression inversely correlates with ERα and relates to improved clinical outcomes from nab-paclitaxel treatment. Importantly, ERα stimulates m6A dependent maturation of miR199a-5p, which is elevated in ER+ breast cancer, to inhibit CAV1 translation by antagonizing m6A modification of CAV1 mRNA. Together, our findings reveal a novel role of ERα in promoting m6A modification and subsequent maturation of miR199a-5p, which is upregulated in ER+ breast cancer, leading to the suppression of m6A modification of CAV1 and its mRNA translation, thereby contributing to nab-paclitaxel resistance. Thus, combining an ER antagonist with nab-paclitaxel could offer a promising strategy for treating ER+ breast cancer patients.

12.
Front Oncol ; 12: 942258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338718

RESUMO

Introduction: Sinonasal mucosal melanoma (SNMM) originates from melanocytes. Currently, the main treatment methods, including surgery, radiotherapy and chemotherapy, have little effect on the recurrence and metastasis of SNMM. However, targeted therapy may be a breakthrough in treating SNMM. Methods: A SNMM patient with ROS1 fusion received 250mg Crizotinib capsule (2 times a day, 1 tablet each time) therapy. Results: The patient achieved partial remission after 4 months of treatment and complete remission after 8 months of treatment. Conclusion: Our findings suggest that crizotinib can be an option to improve overall survival and quality of life of patients with metastatic ROS1-fusion SNMM. We believe that our report will provide insights for the application of crizotini in the treatment of melanoma.

13.
Front Pharmacol ; 13: 883600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991878

RESUMO

Background: Cardiotoxicity associated with the sequential use of anthracyclines followed by trastuzumab is common in adjuvant therapy of patients with HER2-positive early breast cancer (eBC). However, the cardiac safety of trastuzumab concurrent with pegylated liposomal doxorubicin (PLD) is relatively less studied. Method: Clinical data of patients with HER2-positive eBC treated with PLD and cyclophosphamide (PLD-C) followed by taxanes plus trastuzumab ± pertuzumab (TH or TPH) who then completed standard anti-HER2 treatment for 12 months from June 2012 to August 2021 were retrospectively collected. The primary endpoints were clinical and subclinical cardiotoxicity. Result: In total, 70 eligible patients were enrolled. Among them, 55 patients (78.6%) received PLD-C → TH and 15 patients (21.4%) received PLD-C → TPH. The median follow-up time was 41.8 months. Until August 2021, only two patients had recurrent or metastatic diseases, with 2-year and 5-year disease-free survivals of 98.6% and 96.8%, respectively. Clinical cardiotoxicity occurred in six patients (8.6%), and all of them had an absolute decline of ≥16% from baseline left ventricular ejection fraction (LVEF) but not below the lower limit of normal (LLN = 50%). Subclinical cardiotoxicity events occurred in 17 patients (24.3%), and all of them had absolute declines of ≥10% and <16% from baseline LVEF but not below the LLN. No patients were interrupted from treatment, and all patients completed anti-HER2 treatment for 12 months. The sharpest decrease in LVEF was observed at 18 months after the start of PLD treatment. The cumulative incidences of clinical and subclinical cardiotoxicity were 9.8% and 28.3%, respectively. In the univariate analysis, body mass index, age, left chest wall radiotherapy, and ongoing cardiovascular risk factors were not significantly associated with clinical or subclinical cardiotoxicity (p > 0.05). No patients had congestive heart failure or death caused by PLD or anti-HER2 treatment. Conclusion: The sequential use of PLD and trastuzumab showed a lower incidence of clinical cardiotoxicity, presented as asymptomatic decreased LVEF, compared with the results obtained in previous clinical studies using conventional anthracycline, taxanes and trastuzumab. The study regimen demonstrated good cardiac tolerance and is an alternative strategy for cardioprotection in patients with HER2-positive eBC.

14.
Cell Death Dis ; 13(7): 644, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871216

RESUMO

The growing understanding of RNA functions and their crucial roles in diseases promotes the application of various RNAs to selectively function on hitherto "undruggable" proteins, transcripts and genes, thus potentially broadening the therapeutic targets. Several RNA-based medications have been approved for clinical use, while others are still under investigation or preclinical trials. Various techniques have been explored to promote RNA intracellular trafficking and metabolic stability, despite significant challenges in developing RNA-based therapeutics. In this review, the mechanisms of action, challenges, solutions, and clinical application of RNA-based therapeutics have been comprehensively summarized.


Assuntos
RNA Interferente Pequeno , Interferência de RNA , RNA Interferente Pequeno/genética
16.
Nat Commun ; 13(1): 3034, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641493

RESUMO

Abnormal neddylation activation is frequently observed in human cancers and neddylation inhibition has been proposed as a therapy for cancer. Here, we report that MLN4924, a small-molecule inhibitor of neddylation activating enzyme, increases glutamine uptake in breast cancer cells by causing accumulation of glutamine transporter ASCT2/SLC1A5, via inactivation of CRL3-SPOP E3 ligase. We show the E3 ligase SPOP promotes ASCT2 ubiquitylation, whereas SPOP itself is auto-ubiquitylated upon glutamine deprivation. Thus, SPOP and ASCT2 inversely regulate glutamine uptake and metabolism. SPOP knockdown increases ASCT2 levels to promote growth which is rescued by ASCT2 knockdown. Adding ASCT2 inhibitor V-9302 enhances MLN4924 suppression of tumor growth. In human breast cancer specimens, SPOP and ASCT2 levels are inversely correlated, whereas lower SPOP with higher ASCT2 predicts a worse patient survival. Collectively, our study links neddylation to glutamine metabolism via the SPOP-ASCT2 axis and provides a rational drug combination for enhanced cancer therapy.


Assuntos
Neoplasias da Mama , Proteínas Nucleares , Proteínas Repressoras , Ubiquitina-Proteína Ligases , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Feminino , Glutamina/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Blood ; 139(26): 3752-3770, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35439288

RESUMO

Differentiation blockade is a hallmark of acute myeloid leukemia (AML). A strategy to overcome such a blockade is a promising approach against the disease. The lack of understanding of the underlying mechanisms hampers development of such strategies. Dysregulated ribonucleotide reductase (RNR) is considered a druggable target in proliferative cancers susceptible to deoxynucleoside triphosphate (dNTP) depletion. Herein, we report an unanticipated discovery that hyperactivating RNR enables differentiation and decreases leukemia cell growth. We integrate pharmacogenomics and metabolomics analyses to identify that pharmacologically (eg, nelarabine) or genetically upregulating RNR subunit M2 (RRM2) creates a dNTP pool imbalance and overcomes differentiation arrest. Moreover, R-loop-mediated DNA replication stress signaling is responsible for RRM2 activation by nelarabine treatment. Further aggravating dNTP imbalance by depleting the dNTP hydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) enhances ablation of leukemia stem cells by RRM2 hyperactivation. Mechanistically, excessive activation of extracellular signal-regulated kinase (ERK) signaling downstream of the imbalance contributes to cellular outcomes of RNR hyperactivation. A CRISPR screen identifies a synthetic lethal interaction between loss of DUSP6, an ERK-negative regulator, and nelarabine treatment. These data demonstrate that dNTP homeostasis governs leukemia maintenance, and a combination of DUSP inhibition and nelarabine represents a therapeutic strategy.


Assuntos
Leucemia Mieloide Aguda , Ribonucleotídeo Redutases , Replicação do DNA , Homeostase , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Polifosfatos , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
18.
Cell Commun Signal ; 20(1): 39, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346236

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most fatal cancers. Due to limited strategies for effective treatments, patients with advanced HCC have a very poor prognosis. This study aims to identify new insights in HCC to develop novel strategies for HCC management. METHODS: The role of WIP1 (wild type p53 induced protein phosphatase1) in HCC was analyzed in HCC cells, xenograft model, DEN (Diethylnitrosamine) induced mice liver cancer model with WIP1 knockout mice, and TCGA database. DNA damage was evaluated by Gene Set Enrichment Analysis, western blotting, comet assay, and Immunofluorescence. RESULTS: High expression of WIP1 is associated with the poor prognosis of patients with HCC. Genetically and chemically suppression of WIP1 drastically reduced HCC cell proliferation. Besides, WIP1 knockout retarded DEN induced mice hepato-carcinogenesis. Mechanically, WIP1 inhibition induced DNA damage by increasing H2AX phosphorylation (γH2AX). Therefore, suppression of WIP1 and PARP induced synthetic lethality in HCC in vitro and in vivo by augmenting DNA damage. CONCLUSION: WIP1 plays an oncogenic effect in HCC development, and targeting WIP1-dependent DNA damage repair alone or in combination with PARP inhibition might be a reasonable strategy for HCC management. Video abstract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Camundongos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Mutações Sintéticas Letais
19.
Am J Cancer Res ; 12(1): 427-444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141027

RESUMO

Differentiation arrest represents a distinct hallmark of acute myeloid leukemia (AML). Identification of differentiation-induction agents that are effective across various subtypes remains an unmet challenge. GTP biosynthesis is elevated in several types of cancers, considered to support uncontrolled tumor growth. Here we report that GTP overload by supplementation of guanosine, the nucleoside precursor of GTP, poises AML cells for differentiation and growth inhibition. Transcriptome profiling of guanosine-treated AML cells reveals a myeloid differentiation pattern. Importantly, the treatment compromises leukemia progression in AML xenograft models. Mechanistically, GTP overproduction requires sequential metabolic conversions executed by the purine salvage biosynthesis pathway including the involvement of purine nucleoside phosphorylase (PNP) and hypoxanthine phosphoribosyltransferase 1 (HPRT1). Taken together, our study offers novel metabolic insights tethering GTP homeostasis to myeloid differentiation and provides an experimental basis for further clinical investigations of guanosine or guanine nucleotides in the treatment of AML patients.

20.
Clin Transl Med ; 12(1): e703, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073459

RESUMO

BACKGROUND: Chemoresistance to cisplatin (DDP) remains a major challenge in advanced gastric cancer (GC) treatment. Although accumulating evidence suggests an association between dysregulation of long non-coding RNAs (lncRNAs) and chemoresistance, the regulatory functions and complexities of lncRNAs in modulating DDP-based chemotherapy in GC remain under-investigated. This study was designed to explore the critical chemoresistance-related lncRNAs in GC and identify novel therapeutic targets for patients with chemoresistant GC. METHODS: Chemoresistance-related lncRNAs were identified through microarray and verified through a quantitative real-time polymerase chain reaction (qRT-PCR). Proteins bound by lncRNAs were identified through a human proteome array and validated through RNA immunoprecipitation (RIP) and RNA pull-down assays. Co-immunoprecipitation and ubiquitination assays were performed to explore the molecular mechanisms of the Musashi2 (MSI2) post-modification. The effects of LINC00942 (LNC942) and MSI2 on DDP-based chemotherapy were investigated through MTS, apoptosis assays and xenograft tumour formation in vivo. RESULTS: LNC942 was found to be up-regulated in chemoresistant GC cells, and its high expression was positively correlated with the poor prognosis of patients with GC. Functional studies indicated that LNC942 confers chemoresistance to GC cells by impairing apoptosis and inducing stemness. Mechanically, LNC942 up-regulated the MSI2 expression by preventing its interaction with SCFß-TRCP E3 ubiquitin ligase, eventually inhibiting ubiquitination. Then, LNC942 stabilized c-Myc mRNA in an N6-methyladenosine (m6 A)-dependent manner. As a potential m6 A recognition protein, MSI2 stabilized c-Myc mRNA with m6 A modifications. Moreover, inhibition of the LNC942-MSI2-c-Myc axis was found to restore chemosensitivity both in vitro and in vivo. CONCLUSIONS: These results uncover a chemoresistant accelerating function of LNC942 in GC, and disrupting the LNC942-MSI2-c-Myc axis could be a novel therapeutic strategy for GC patients undergoing chemoresistance.


Assuntos
Cisplatino/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Genes myc/efeitos dos fármacos , RNA Longo não Codificante/agonistas , Proteínas de Ligação a RNA/antagonistas & inibidores , Cisplatino/uso terapêutico , Genes myc/fisiologia , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/uso terapêutico , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA