Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 676: 105-119, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029895

RESUMO

Dams and wastewater may greatly perturb riverine fluxes of dissolved organic matter (DOM) and CO2, yet little is known about the relationships between altered DOM quality and CO2 emission in eutrophic impounded river systems. A basin-wide field survey of surface water CO2 and dissolved organic carbon (DOC) was combined with laboratory incubations to examine how dams and urban tributaries delivering treated wastewater influence longitudinal patterns in DOM properties and CO2 along the impounded Han River traversing Seoul metropolitan area. Fluorescent DOM indices including parallel factor analysis (PARAFAC) components were used to characterize DOM in relation to biodegradable DOC (BDOC). Compared with distinct downstream increases in DOC and CO2, BDOC concentration and its proportion in DOC (%BDOC) were highly variable along the mainstem and peaked at urban tributaries. Longitudinal increases in fluorescence index (FI), biological index (BIX), and two PARAFAC components (C2 and C3) contrasted with general decreases in humification index (HIX) and C1, reflecting increasing downstream inputs of anthropogenic DOM. During a 5-day incubation employing continuous CO2 measurements, the cumulative production of CO2 in the mainstem water mixed with urban tributary water was significantly higher than the level expected for conservative mixing of the two samples, indicating a synergistic enhancement of DOM biodegradation. Molecular formulas identified by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) revealed more consumed molecules in the mainstem water and more newly produced molecules in the tributary water over the 5-day incubation, implying abundant labile components in the mainstem water discharged from the upstream dam and highly processed tributary DOM limited in immediately biodegradable organic materials. Downstream increases in CO2 and DOC along the Han River, combined with the synergistic effect observed in the mixed water, suggest that mixing wastewater-derived DOM with labile autochthonous DOM can enhance CO2 production in the river system perturbed by impoundment and wastewater.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Poluentes da Água/análise , Substâncias Húmicas/análise , Rios/química , Seul , Águas Residuárias
2.
Environ Sci Technol ; 51(18): 10459-10467, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28826218

RESUMO

Continuous underway measurements were combined with a basin-scale survey to examine human impacts on CO2 outgassing in a highly urbanized river system in Korea. While the partial pressure of CO2 (pCO2) was measured at 15 sites using syringe equilibration, 3 cruises employing an equilibrator were done along a 30 km transect in the Seoul metropolitan area. The basin-scale survey revealed longitudinal increases in surface water pCO2 and dissolved organic carbon (DOC) in the downstream reach. Downstream increases in pCO2, DOC, fluorescence index, and inorganic N and P reflected disproportionately large contributions from wastewater treatment plant (WWTP) effluents carried by major urban tributaries. Cruise transects exhibited strong localized peaks of pCO2 up to 13 000 µatm and 13CO2 enrichment along the confluences of tributaries at an average flow, whereas CO2 pulses were dampened by increased flow during the monsoon period. Fluctuations in pCO2 along the eutrophic reach downstream of the confluences reflected environmental controls on the balance between photosynthesis, biodegradation, and outgassing. The results underscore WWTP effluents as an anthropogenic source of nutrients, DOC, and CO2 and their influences on algal blooms and associated C dynamics in eutrophic urbanized river systems, warranting further research on urbanization-induced perturbations to riverine metabolic processes and carbon fluxes.


Assuntos
Dióxido de Carbono/análise , Águas Residuárias , Carbono , Monitoramento Ambiental , República da Coreia , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA