Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400450, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660929

RESUMO

For the sluggish reaction kinetics due to a four-electron transfer process, water oxidation is always a major obstacle to solar splitting of water to hydrogen. It remains a tough challenge to develop efficient nonnoble-metal photocatalysts for water oxidation. Herein, we decorate the host photocatalyst of Bi11VO19 nanotubes with the coatalyst of subnanometer MoOx clusters (denoted as Bi11VO19/MoOx hetero-nanotubes) via a one-step cation-exchange solvothermal reaction using Na2V6O16 nanowires as the hard template. It is observed that the morphology and microstructure of Bi11VO19/MoOx hetero-nanotubes vary with the dosage of Mo source and polyvinylpyrrolidone, as well as with the solvent composition. The optimized Bi11VO19/MoOx hetero-nanotubes significantly enhance the photooxidation of water to oxygen with visible light, delivering an oxygen production rate of 790 µmol g-1 h-1, which is 12 times that of bare Bi11VO19 nanotubes. In situ X-ray photoelectron spectroscopy and (photo)electrochemical characterization suggest that the enhanced photoactivity may be caused by the decorated cocatalyst of MoOx clusters, which extracts electrons from Bi11VO19 nanotubes, leaving an abundance of holes for water photooxidation. This work demonstrates a potential strategy to develop photocatalysts for energy conversion by constructing Bi11VO19-based nanostructures.

2.
Eur J Med Chem ; 254: 115367, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086699

RESUMO

Histone deacetylases (HDACs) and lysine-specific demethylase 1 (LSD1) are attractive targets for epigenetic cancer therapy. There is an intimate interplay between the two enzymes. HDACs inhibitors have shown synergistic anticancer effects in combination with LSD1 inhibitors in several types of cancer. Herein, we describe the discovery of compound 5e, a highly potent HDACs inhibitor (HDAC1/2/6/8; IC50 = 2.07/4.71/2.40/107 nM) with anti-LSD1 potency (IC50 = 1.34 µM). Compound 5e exhibited marked antiproliferative activity in several cancer cell lines. 5e effectively induced mitochondrial apoptosis with G2/M phase arrest, inhibiting cell migration and invasion in MGC-803 and HCT-116 cancer cells. It also showed good liver microsomal stability and acceptable pharmacokinetic parameters in SD rats. More importantly, orally administered compound 5e demonstrated higher in vivo antitumor efficacy than SAHA in the MGC-803 (TGI = 71.5%) and HCT-116 (TGI = 57.6%) xenograft tumor models accompanied by good tolerability. This study provides a novel lead compound with dual inhibitory activity against HDACs and LSD1 to further develop epigenetic drugs for solid tumor therapy. Further optimization is needed to improve the LSD1 activity to achieve dual inhibitors with balanced potency on LSD1 and HDACs.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Ratos , Animais , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Proliferação de Células , Apoptose , Histona Desmetilases , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Relação Estrutura-Atividade
3.
J Immunol Res ; 2023: 1914036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660247

RESUMO

Background: It is lacking that markers could predict the prognosis of chronic hepatitis B (CHB) subjects during antiviral treatment, and the related cellular immune mechanism is not fully evaluated. Aim: To explore the comprehensive profile of T cell receptor ß-chain (TRBV) and CD4+CD25+ regulatory T cell (Treg) in peripheral blood of CHB patients with HBeAg seroconverting (SC) during tenofovir disoproxil fumarate (TDF) treatment. Methods: The frequency of CD4+CD25high+ Treg and number of skewed TRBV in 20 HBeAg positive patients were determined at baseline and following every 12 weeks during 96-week TDF treatment. The relationship among serum alanine aminotransferase (ALT) level, HBV DNA load, Treg frequency, and the number of skewed TRBV, respectively, was analyzed for CHB patients. Receiver operative characteristic curve was applied to analyze their diagnostic value for HBeAg SC. Results: The number of skewed TRBV at week 48, Treg frequency at week 72, and ALT level at baseline could predict the HBeAg SC or non-SC in CHB patients during 96-week TDF treatment. Moreover, the positive correlation between ALT or HBV DNA and Treg levels or skewed TRBVs was significant in the SC group, but not in non-SC. Conclusions: The predictive cutoff value of ALT for HBeAg SC was 178 U/L at baseline. Moreover, the ALT, Treg, and TRBV families would be associated with the prognosis and pathogenesis of CHB patients during TDF treatment.


Assuntos
Antígenos E da Hepatite B , Hepatite B Crônica , Humanos , Tenofovir/uso terapêutico , Antígenos E da Hepatite B/uso terapêutico , DNA Viral , Linfócitos T Reguladores , Hepatite B Crônica/tratamento farmacológico , Antivirais/uso terapêutico , Carga Viral , Resultado do Tratamento , Vírus da Hepatite B/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-36078322

RESUMO

Capacitive deionization (CDI) is an emerging eco-friendly desalination technology with mild operation conditions. However, the energy consumption of CDI has not yet been comprehensively summarized, which is closely related to the economic cost. Hence, this study aims to review the energy consumption performances and mechanisms in the literature of CDI, and to reveal a future direction for optimizing the consumed energy. The energy consumption of CDI could be influenced by a variety of internal and external factors. Ion-exchange membrane incorporation, flow-by configuration, constant current charging mode, lower electric field intensity and flowrate, electrode material with a semi-selective surface or high wettability, and redox electrolyte are the preferred elements for low energy consumption. In addition, the consumed energy in CDI could be reduced to be even lower by energy regeneration. By combining the favorable factors, the optimization of energy consumption (down to 0.0089 Wh·gNaCl-1) could be achieved. As redox flow desalination has the benefits of a high energy efficiency and long lifespan (~20,000 cycles), together with the incorporation of energy recovery (over 80%), a robust future tendency of energy-efficient CDI desalination is expected.

5.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014701

RESUMO

Heavy metal pollution is a serious threat to human health and the ecological environment, but adsorption technology based on nano adsorbents can effectively treat the crisis. However, due to the nanoscale effect, nano adsorbents have some crucial shortcomings, such as recycling difficulty and the loss of nanoparticles, which seriously limit their application. The feasible assembly of nano adsorbents is an accessible technology in urgent need of a breakthrough. In this study, three-dimensional (3D) adsorbent (MF/Ti3C2Tx/PmPD) with excellent performance and favorable recyclability was prepared by interfacial polymerization with melamine foam (MF) as the framework, two-dimensional (2D) titanium carbide (Ti3C2Tx) as the bridge and Poly (m-Phenylenediamine) (PmPD) as the active nano component. The morphology, structure, mechanical property of MF/Ti3C2Tx/PmPD and reference MF/PmPD were investigated through a scanning electron microscope (SEM), Fourier transformed infrared spectra (FT-IR), Raman scattering spectra and a pressure-stress test, respectively. Owning to the regulation of Ti3C2Tx on the morphology and structure of PmPD, MF/Ti3C2Tx/PmPD showed excellent adsorption capacity (352.15 mg/g) and favorable cycling performance. R-P and pseudo-second-order kinetics models could well describe the adsorption phenomenon, indicating that the adsorption process involved a composite process of single-layer and multi-layer adsorption and was dominated by chemical adsorption. In this research, the preparation mechanism of MF/Ti3C2Tx/PmPD and the adsorption process of Cr(VI) were systematically investigated, which provided a feasible approach for the feasible assembly and application of nano adsorbents in the environmental field.

6.
ACS Appl Mater Interfaces ; 14(11): 13177-13185, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262320

RESUMO

Electrochemical deionization (EDI) is hopefully the next generation of water treatment technology. Bismuth (Bi) is a promising anode material for EDI, due to its high capacity and selectivity toward Cl-, but the large volume expansion and severe pulverization aggressively attenuated the EDI cycling performance of Bi electrodes. Herein, carbon-layer-encapsulated nano-Bi composites (Bi@C) were prepared by a simple pyrolysis method using a Bi-based metal-organic framework as a precursor. Bi nanoparticles are uniformly coated within the carbon layer, in which the Bi-O-C bond enhances the interaction between Bi and C. Such a structure effectively relieves the stress caused by volume expansion by the encapsulation effect of the carbon layer. Moreover, the introduction of a carbon skeleton provides a conductive network. As a consequence, the Bi@C composite delivered excellent electrochemical performance with a capacity of 537.6 F g-1 at 1 mV s-1. The Cl- removal capacity was up to 133.5 mg g-1 at 20 mA g-1 in 500 mg L-1 NaCl solution. After 100 cycles, the Bi@C electrode still maintains 71.8% of its initial capacity, which is much higher than the 26.3% of the pure Bi electrode. This study provides a promising strategy for improving EDI electrode materials.

7.
J Hazard Mater ; 430: 128401, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149494

RESUMO

Bauxite is a widely available Al-O-rich mineral with great potential for abating fluoride. However, low adsorption capacity, a narrow workable pH range, and a lack of clarity on the best removal mechanism hinder its application. In this work, a highly efficient bauxite nanocomposite (Bx-Ce-La@500) was synthesized via doping and pyrolysis, and its fluoride adsorption in industrial wastewater was examined. Doping Ce/La synergistically improved the fluoride adsorption affinity of the composite (from pHPZC 8.0 ~ 10.0) and enhanced the •OH. The materials were characterized by SEM-EDS, BET, XRD, and TGA while XPS, FTIR, and DFT were used to investigate the mechanism of fluoride sorption. Results show that Bx-Ce-La@ 500 has a positive zeta potential of 26.3-23.1 mV from pH 1~ 10. The Langmuir model was the best fit with a maximum adsorption capacity of 88.13 mg/g and removal efficiency up to 100% in 50 ppm F- solution. The high F- removal was attributed to the enhanced surface affinity and the formation of adequate •OH on the material. Except for carbonate and phosphate ions, other ions exhibited negligible effects and the selective removal of F- in real wastewater was high. The main mechanism of adsorption was the ligand/ion exchange and electrostatic attraction.

8.
Gut ; 71(1): 163-175, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33431576

RESUMO

OBJECTIVE: Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) pathophysiology remains unclear. This study aims to characterise the molecular basis of HBV-ACLF using transcriptomics. METHODS: Four hundred subjects with HBV-ACLF, acute-on-chronic hepatic dysfunction (ACHD), liver cirrhosis (LC) or chronic hepatitis B (CHB) and normal controls (NC) from a prospective multicentre cohort were studied, and 65 subjects (ACLF, 20; ACHD, 10; LC, 10; CHB, 10; NC, 15) among them underwent mRNA sequencing using peripheral blood mononuclear cells (PBMCs). RESULTS: The functional synergy analysis focusing on seven bioprocesses related to the PBMC response and the top 500 differentially expressed genes (DEGs) showed that viral processes were associated with all disease stages. Immune dysregulation, as the most prominent change and disorder triggered by HBV exacerbation, drove CHB or LC to ACHD and ACLF. Metabolic disruption was significant in ACHD and severe in ACLF. The analysis of 62 overlapping DEGs further linked the HBV-based immune-metabolism disorder to ACLF progression. The signatures of interferon-related, neutrophil-related and monocyte-related pathways related to the innate immune response were significantly upregulated. Signatures linked to the adaptive immune response were downregulated. Disruptions of lipid and fatty acid metabolism were observed during ACLF development. External validation of four DEGs underlying the aforementioned molecular mechanism in patients and experimental rats confirmed their specificity and potential as biomarkers for HBV-ACLF pathogenesis. CONCLUSIONS: This study highlights immune-metabolism disorder triggered by HBV exacerbation as a potential mechanism of HBV-ACLF and may indicate a novel diagnostic and treatment target to reduce HBV-ACLF-related mortality.


Assuntos
Insuficiência Hepática Crônica Agudizada/patologia , Hepatite B Crônica/complicações , Leucócitos Mononucleares/imunologia , Insuficiência Hepática Crônica Agudizada/virologia , Imunidade Adaptativa , Adulto , Animais , Estudos de Casos e Controles , DNA Viral/sangue , Feminino , Vírus da Hepatite B , Humanos , Imunidade Inata , Masculino , Metaboloma , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Transcriptoma
9.
Environ Technol ; 43(21): 3248-3261, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33945450

RESUMO

In this paper, the effect of different crystal forms of Al2O3 on fluoride removal was studied. All crystal forms of Al2O3 were based on the same boehmite precursor and were obtained using a hydrothermal and calcination method. γ-Al2O3 had higher fluoride removal performance (52.15 mg/g) compared with θ-Al2O3 and α-Al2O3. Density functional theory (DFT) calculations confirmed that fluoride removal was greatest for γ-Al2O3, followed by θ-Al2O3 and α-Al2O3, and γ-Al2O3 possessed the strongest fluoride binding energy (-3.93 eV). The typical adsorption behaviour was consistent with the Langmuir model and pseudo-second-order model, indicating chemical and monolayer adsorption. Different metal ions were used to modify γ-Al2O3, and lanthanum had the best effect. Lanthanum oxide was shown to play an important role in fluoride removal. The best La/Al doping ratio was 20 At%. The adsorption process of the composite was also consistent with chemical and monolayer adsorption. When the La/Al doping rate was 20%, the adsorption capacity reached 94.64 mg/g. Compared with γ-Al2O3 (1.39 × 10-7 m/s), the adsorption rate of 20La-Al2O3 was 3.93 × 10-7 m/s according to the mass transfer model. Furthermore, DFT was used to provide insight into the adsorption mechanism, which was mainly driven by electrostatic attraction and ion exchange.

10.
Liver Int ; 41(10): 2440-2454, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34219353

RESUMO

BACKGROUND & AIMS: The evaluation of the stage of liver fibrosis is essential in patients with chronic liver disease. However, due to the low quality of ultrasound images, the non-invasive diagnosis of liver fibrosis based on ultrasound images is still an outstanding question. This study aimed to investigate the diagnostic accuracy of a deep learning-based method in ultrasound images for liver fibrosis staging in multicentre patients. METHODS: In this study, we proposed a novel deep learning-based approach, named multi-scale texture network (MSTNet), to assess liver fibrosis, which extracted multi-scale texture features from constructed image pyramid patches. Its diagnostic accuracy was investigated by comparing it with APRI, FIB-4, Forns and sonographers. Data of 508 patients who underwent liver biopsy were included from 4 hospitals. The area-under-the ROC curve (AUC) was determined by receiver operating characteristics (ROC) curves for significant fibrosis (≥F2) and cirrhosis (F4). RESULTS: The AUCs (95% confidence interval) of MSTNet were 0.92 (0.87-0.96) for ≥F2 and 0.89 (0.83-0.95) for F4 on the validation group, which significantly outperformed APRI, FIB-4 and Forns. The sensitivity and specificity of MSTNet (85.1% (74.5%-92.0%) and 87.6% (78.0%-93.6%)) were better than those of three sonographers in assessing ≥F2. CONCLUSIONS: The proposed MSTNet is a promising ultrasound image-based method for the non-invasive grading of liver fibrosis in patients with chronic HBV infection.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatias , Aspartato Aminotransferases , Biomarcadores , Biópsia , Vírus da Hepatite B , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Hepatopatias/patologia , Curva ROC
11.
Eur J Med Chem ; 222: 113588, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107385

RESUMO

Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histonas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Epigênese Genética/genética , Histonas/genética , Humanos , Estrutura Molecular , Neoplasias/genética
12.
Eur J Med Chem ; 220: 113453, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33957387

RESUMO

LSD1 and HDAC are physical and functional related to each other in various human cancers and simultaneous pharmacological inhibition of LSD1 and HDAC exerts synergistic anti-cancer effects. In this work, a series of novel LSD1/HDAC bifunctional inhibitors with a styrylpyridine skeleton were designed and synthesized based on our previously reported LSD1 inhibitors. The representative compounds 5d and 5m showed potent activity against LSD1 and HDAC at both molecular and cellular level and displayed high selectivity against MAO-A/B. Moreover, compounds 5d and 5m demonstrated potent antiproliferative activities against MGC-803 and HCT-116 cancer cell lines. Notably, compound 5m showed superior in vitro anticancer potency against a panel of gastric cancer cell lines than ORY-1001 and SP-2509 with IC50 values ranging from 0.23 to 1.56 µM. Compounds 5d and 5m significantly modulated the expression of Bcl-2, Bax, Vimentin, ZO-1 and E-cadherin, induced apoptosis, reduced colony formation and suppressed migration in MGC-803 cancer cells. In addition, preliminary absorption, distribution, metabolism, excretion (ADME) studies revealed that compounds 5d and 5m showed acceptable metabolic stability in human liver microsomes with minimal inhibition of cytochrome P450s (CYPs). Those results indicated that compound 5m could be a promising lead compound for further development as a therapeutic agent in gastric cancers via LSD1 and HDAC dual inhibition.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Histona Desacetilases/metabolismo , Histona Desmetilases/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona Desmetilases/metabolismo , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Small ; 17(20): e2007994, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749108

RESUMO

Rhenium is one of the most valuable elements found in nature, and its capture and recycle are highly desirable for resource recovery. However, the effective and efficient collection of this material from industrial waste remains quite challenging. Herein, a tetraphenylmethane-based cationic polymeric network (CPN-tpm) nanotrap is designed, synthesized, and evaluated for ReO4- recovery. 3D building units are used to construct imidazolium salt-based polymers with positive charges, which yields a record maximum uptake capacity of 1133 mg g-1 for ReO4- collection as well as fast kinetics ReO4- uptake. The sorption equilibrium is reached within 20 min and a kd value of 8.5 × 105 mL g-1 is obtained. The sorption capacity of CPN-tpm remains stable over a wide range of pH values and the removal efficiency exceeds 60% for pH levels below 2. Moreover, CPN-tpm exhibits good recyclability for at least five cycles of the sorption-desorption process. This work provides a new route for constructing a kind of new high-performance polymeric material for rhenium recovery and rhenium-contained industrial wastewater treatment.


Assuntos
Rênio , Ânions , Polímeros , Águas Residuárias
14.
Environ Sci Ecotechnol ; 8: 100123, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36156989

RESUMO

In this study, metal-organic framework MIL-53(Al) was synthesized and studied to understand the different mechanisms between normal MIL-53(Al) and 2D metal-organic framework MIL-53(Al) for removing fluoride. Comparatively, the 2D MIL-53(Al) had two-dimensional linear morphology rather than block shape, indicating more expose adsorptive sites than normal MIL-53(Al). The batch adsorption experiments were applied to investigate the performance of 2D MIL-53(Al), including pH, adsorption kinetics, and thermodynamics. The 2D MIL-53(Al) (75.50 mg/g) showed better adsorption capacity than normal MIL-53(Al) (35.63 mg/g). The adsorption process of 2D MIL-53(Al) followed the pseudo-first-order model and Langmuir model. The adsorption mechanism of this material was further studied by using experimental characterization and density functional theory calculations in detail. The main adsorptive sites were Al and O in the 2D MIL-53(Al), and the relationship between fluoride binding with Al and O was HF2 - > HF > F-. The species of fluoride were HF2 -, HF, F at different pH and concentrations. Hence, this study provides a significant way on the application of two-dimensional materials for removing fluoride.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32793509

RESUMO

The ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin motif repeats 13) is a key factor involved in coagulation process and plays a vital role in the progression and prognosis of chronic hepatitis B (CHB) patients with antiviral treatment. However, there are few reports about the profile of plasma ADAMTS13 in CHB patients during entecavir maleate (m-ETV) treatment. One hundred two HBV e antigen (HBeAg)-positive CHB patients on continuous m-ETV naive for at least 96 weeks were recruited. Patients with liver cirrhosis were excluded using liver biopsies and real-time elastography. Plasma ADAMTS13 and interleukin 12 (IL-12) levels were evaluated at baseline and12, 24, 48, 72, and 96 weeks, respectively. The change of ADAMTS13 (ΔADAMTS13) and IL-12 (ΔIL-12) possesses a significant relationship in CHB patients with HBeAg seroconversion (SC) at 48-week m-ETV treatment (p < 0.001), but no significance in patients without SC. Furthermore, Cox multivariate analysis demonstrated that the change of ADAMTS13 (IL-12) is an independent predictor for HBeAg SC at week 96, and the area under the receiver operating characteristic curve for the ΔADAMTS13 (ΔIL-12) in CHB patients with 48-week m- ETV treatment is 0.8204 (0.8354) (p < 0.001, both) to predict HBeAg SC at week 96. The results suggested that higher increased ADAMTS13 and IL-12 after 48-week m-ETV treatment contributed to an enhanced probability of HBeAg SC, although the mechanism is undetermined. Quantification of ADAMTS13 (IL-12) during m-ETV treatment may help to predict long-term HBeAg SC in CHB patients.


Assuntos
Proteína ADAMTS13/sangue , Antígenos E da Hepatite B , Hepatite B Crônica , Interleucina-12/sangue , Antivirais/uso terapêutico , DNA Viral , Antígenos E da Hepatite B/uso terapêutico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Maleatos/uso terapêutico , Soroconversão , Resultado do Tratamento
16.
Hepatobiliary Pancreat Dis Int ; 19(4): 384-389, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32540209

RESUMO

BACKGROUND: Serum chitinase-3-like protein 1 (CHI3L1) is a potential biomarker for fibrosis assessment. We aimed to evaluate serum CHI3L1 as a noninvasive diagnostic marker for chronic hepatitis B virus-related fibrosis. METHODS: Serum CHI3L1 levels were measured by ELISA in 134 chronic hepatitis B (CHB) patients. Significant fibrosis was defined as a liver stiffness > 9.7 kPa. The performance of CHI3L1 was assessed and compared to that of other noninvasive tests by receiver operating characteristic (ROC) analysis. RESULTS: Serum CHI3L1 levels were significantly higher in CHB patients with significant hepatic fibrosis (≥ F2, 81.9 ng/mL) than in those without significant hepatic fibrosis (< F2, 56.5 ng/mL) (P < 0.001). In CHB patients, the specificity and sensitivity of CHI3L1 for predicting significant fibrosis were 75.6% and 59.1%, respectively, with a cut-off of 76.0 ng/mL and an area under the ROC curve of 0.728 (95% CI: 0.637-0.820). CONCLUSIONS: Serum CHI3L1 levels could be an effective new serological biomarker for the diagnosis of liver. Moreover, CHI3L1 is feasible in monitoring disease progression.


Assuntos
Proteína 1 Semelhante à Quitinase-3/sangue , Hepatite B Crônica/sangue , Cirrose Hepática/sangue , Adulto , Biomarcadores/sangue , China , Progressão da Doença , Feminino , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
17.
Chemosphere ; 251: 126319, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32169717

RESUMO

Electro-adsorption is attracting increasing attention as an emerging technology for removing ionic species from water but suffer from low selectivity. In this work, a bismuth/reduced graphene oxide nanocomposite electrode was fabricated by a facile and green method. Based on this material, an electrode with improved selectivity by electrochemistry deionization system was successfully fabricated. The bismuth nanoparticles were uniformly covered with reduced graphene oxide plates and the ratio of Bi on the whole materials is 79.56%. Bismuth/reduced graphene oxide showed ions selectivity in the order of Cl- > F- ≫ [Formula: see text] . The average Cl- removal capacity can reach as high as 62.59 mg g-1. Moreover, bismuth/reduced graphene oxide electrodes have good regeneration performance. Typically, in the 10 adsorption-desorption multicycles, the salt absorption/desorption capacity of the hybrid capacitive deionization system is stable and reversible. This research opened a hopeful window to design and synthesize effective materials to selectively remove the ionic species to purify the water.


Assuntos
Cloro/química , Flúor/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Bismuto/química , Técnicas Eletroquímicas , Eletroquímica , Eletrodos , Grafite , Íons , Cloreto de Sódio
18.
Environ Sci Pollut Res Int ; 27(4): 4115-4126, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31828712

RESUMO

The present research developed a direct in situ heterogeneous method to synthesize UiO-66-poly(m-phenylenediamine) core-shell nanostructures by inducing assembly of m-phenylenediamine radical on UiO-66 surfaces. The strong interaction between negative charged UiO-66 and positive radical from the oxidation of monomer is the major driving force. The produced UiO-66-poly(m-phenylenediamine) composites exhibited a distinct core-shell morphology with controllable surface features. The UiO-661-PmPD0.5 showed a uniform PmPD shell with a thickness of 40-60 nm and the nanocomposite exhibited a high specific surface area of 319.77 m2 g-1. Moreover, the Cr(VI) adsorption amount of the polymeric shell in the nanocomposites can reach as high as 745 mg g-1, far beyond the performance of the original PmPD. The adsorption tends to be equilibrium within 300 min. This research opens a hopeful window for facile and large-scale fabrication of core-shell nanostructures with controllable core-shell configuration, exhibiting high prospect in heavy metal removal from water.


Assuntos
Cromo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Fenilenodiaminas
19.
Artigo em Inglês | MEDLINE | ID: mdl-31881705

RESUMO

Titanium carbides (MXenes) are promising multifunctional materials. However, the negative surface charge and layer-by-layer restacking of MXenes severely restrict their application in the field of anionic pollutants, including in hexavalent chromium (Cr(VI)). Herein, Ti3C2Tx MXenes was functionalized through in situ polymerization and intercalation of poly(m-phenylenediamine) (PmPD), then Ti3C2Tx/PmPD composites were obtained. Delightedly, Ti3C2Tx/PmPD composites exhibited positive surface charge, expanded interlayer spacing, and enhanced hydrophobicity. Furthermore, the specific surface area of Ti3C2Tx/PmPD composite was five and 23 times that of Ti3C2Tx and PmPD, respectively. These advantages endowed Ti3C2Tx/PmPD composite with an excellent adsorption capacity of Cr(VI) (540.47 mg g-1), which was superior to PmPD (384.73 mg g-1), Ti3C2Tx MXene (137.45 mg g-1), and the reported MXene-based adsorbents. The Cr(VI) removal mechanism mainly involved electrostatic adsorption, reduction, and chelation interaction. This study developed a simple functionalization strategy, which would greatly explore the potential of MXenes in the field of anionic pollutants.


Assuntos
Cromo/química , Fenilenodiaminas/química , Titânio/química , Poluentes Químicos da Água/química , Adsorção
20.
Molecules ; 24(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817721

RESUMO

Overexpression of lysine specific demethylase 1 (LSD1) has been found in many cancers. New anticancer drugs targeting LSD1 have been designed. The research on irreversible LSD1 inhibitors has entered the clinical stage, while the research on reversible LSD1 inhibitors has progressed slowly so far. In this study, 41 stilbene derivatives were studied as reversible inhibitors by three-dimensional quantitative structure-activity relationship (3D-QSAR). Comparative molecular field analysis (CoMFA q 2 = 0.623, r 2 = 0.987, r pred 2 = 0.857) and comparative molecular similarity indices analysis (CoMSIA q 2 = 0.728, r 2 = 0.960, r pred 2 = 0.899) were used to establish the model, and the structure-activity relationship of the compounds was explained by the contour maps. The binding site was predicted by two different kinds of software, and the binding modes of the compounds were further explored. A series of key amino acids Val288, Ser289, Gly314, Thr624, Lys661 were found to play a key role in the activity of the compounds. Molecular dynamics (MD) simulations were carried out for compounds 04, 17, 21, and 35, which had different activities. The reasons for the activity differences were explained by the interaction between compounds and LSD1. The binding free energy was calculated by molecular mechanics generalized Born surface area (MM/GBSA). We hope that this research will provide valuable information for the design of new reversible LSD1 inhibitors in the future.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Estilbenos/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA