Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Pharmaceutics ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675151

RESUMO

We have developed an ovarian cancer-targeted drug delivery system based on a follicle-stimulating hormone receptor (FSHR) peptide. The lipophilic chemotherapeutic drug SN38 and the photosensitizer IR820 were loaded into the phospholipid bilayer of liposomes. The combination of chemotherapy and phototherapy has become a promising strategy to improve the therapeutic effect of chemotherapy drugs on solid tumors. IR820 can be used for photodynamic therapy (PDT), effectively converting near-infrared light (NIR) into heat and producing reactive oxygen species (ROS), causing damage to intracellular components and leading to cell death. In addition, PDT generates heat in near-infrared, thereby enhancing the sensitivity of tumors to chemotherapy drugs. FSH liposomes loaded with SN38 and IR820 (SN38/IR820-Lipo@FSH) were prepared using thin-film hydration-sonication. FSH peptide binding was analyzed using 1H NMR spectrum and Maldi-Tof. The average size and zeta potential of SN38/IR820-Lipo@FSH were 105.1 ± 1.15 nm (PDI: 0.204 ± 0.03) and -27.8 ± 0.42 mV, respectively. The encapsulation efficiency of SN38 and IR820 in SN38/IR820-Lipo@FSH liposomes were 90.2% and 91.5%, respectively, and their release was slow in vitro. FSH significantly increased the uptake of liposomes, inhibited cell proliferation, and induced apoptosis in A2780 cells. Moreover, SN38/IR820-Lipo@FSH exhibited better tumor-targeting ability and anti-ovarian cancer activity in vivo when compared with non-targeted SN38/IR820-Lipo. The combination of chemotherapy and photodynamic treatment based on an FSH peptide-targeted delivery system may be an effective approach to treating ovarian cancer.

2.
J Control Release ; 369: 420-443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575075

RESUMO

Wound healing involves distinct phases, including hemostasis, inflammation, proliferation, and remodeling, which is a complex and dynamic process. Conventional preparations often fail to meet multiple demands and provide prompt information about wound status. Here, a pH/ROS dual-responsive hydrogel (OHA-PP@Z-CA@EGF) was constructed based on oxidized hyaluronic acid (OHA), phenylboronic acid-grafted ε-polylysine (PP), chlorogenic acid (CA)-loaded ZIF-8 (Z-CA), and epidermal growth factor (EGF), which possesses intrinsic antibacterial, antioxidant, and angiogenic capacities. Due to the Schiff base and Phenylboronate ester bonds, the hydrogel exhibited excellent mechanical properties, strong adhesion, good biodegradability, high biocompatibility, stable rheological properties, and self-healing ability. Moreover, introducing Z-CA as an initiator and nanofiller led to the additional cross-linking of hydrogel through coordination bonds, which further improved the mechanical properties and antioxidant capabilities. Bleeding models of liver and tail amputations demonstrated rapid hemostatic properties of the hydrogel. Besides, the hydrogel regulated macrophage phenotypes via the NF-κB/JAK-STAT pathways, relieved oxidative stress, promoted cell migration and angiogenesis, and accelerated diabetic wound healing. The hydrogel also enabled real-time monitoring of the wound healing stages by colorimetric detection. This multifunctional hydrogel opens new avenues for the treatment and management of full-thickness diabetic wounds.


Assuntos
Ácido Clorogênico , Hidrogéis , Macrófagos , Nanocompostos , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Hidrogéis/química , Nanocompostos/química , Nanocompostos/administração & dosagem , Células RAW 264.7 , Camundongos , Macrófagos/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Masculino , Fenótipo , Ratos Sprague-Dawley , Polilisina/química , Ácido Hialurônico/química
3.
Nanomaterials (Basel) ; 14(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38607092

RESUMO

Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.

4.
Polymers (Basel) ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337229

RESUMO

With the rapid development of the economy and the demands of people's lives, the usage amount of polymer materials is significantly increasing globally. Chlorobenzenes (CBS) are widely used in the industrial, agriculture and chemical industries, particularly as important chemical raw materials during polymers processes. CBS are difficult to remove due to their properties, such as being hydrophobic, volatile and persistent and biotoxic, and they have caused great harm to the ecological environment and human health. Electrochemical oxidation technology for the treatment of refractory pollutants has been widely used due to its high efficiency and easiness of operation. Thus, the electrochemical oxidation system was established for the efficient treatment of monochlorobenzene (MCB) waste gas. The effect of a single factor, such as anode materials, cathode materials, the electrolyte concentration, current density and electrode distance on the removal efficiency (RE) of MCB gas were first studied. The response-surface methodology (RSM) was used to investigate the relationships between different factors' conditions (current density, electrolyte concentration, electrode distance), and a prediction model was established using the Design-Expert 10.0.1 software to optimize the reaction conditions. The results of the one-factor experiments showed that when treating 2.90 g/m3 MCB gas with a 0.40 L/min flow rate, Ti/Ti4O7 as an anode, stainless steel wire mesh as a cathode, 0.15 mol/L NaCl electrolyte, 10.0 mA/cm2 current density and 4.0 cm electrode distance, the average removal efficiency (RE), efficiency capacity (EC) and energy consumption (Esp) were 57.99%, 20.18 g/(m3·h) and 190.2 (kW·h)/kg, respectively. The results of the RSM showed that the effects of the process parameters on the RE of MBC were as follows: current density > electrode distance > electrolyte concentration; the interactions effects on the RE of MBC were in the order of electrolyte concentration and current density > current density and electrode distance > electrolyte concentration and electrode distance; the optimal experimental conditions were as follows: the concentration of electrolyte was 0.149 mol/L, current density was 18.11 mA, electrode distance was 3.804 cm. Under these conditions, the RE achieved 66.43%. The response-surface variance analysis showed that the regression model reached a significant level, and the validation results were in agreement with the predicted results, which proved the feasibility of the model. The model can be applied to treat the CBS waste gas of polymer processes through electrochemical oxidation.

5.
Biomed Pharmacother ; 170: 116025, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113625

RESUMO

Trace elements (TEs) are essential for the treatment of rheumatoid arthritis (RA). This study aimed to prepare a TEs solution enriched with various organic states to evaluate its preventive, therapeutic effects, and mechanism of action in RA and to provide a treatment method for RA treatment. The TEs in natural ore were extracted and added to 0.5% (W/V) L-alanyl-L-glutamine (LG) to obtain a TEs solution (LG-WLYS), which was examined for its concentration and quality. The antioxidant properties and effects of LG-WLYS on cell behavior were evaluated at the cellular level. The preventive and therapeutic effects and mechanism of action of LG-WLYS in rats with RA were explored. The LG-WLYS solution was clear, free from visible foreign matter, and had a pH of 5.33 and an osmolality of 305.67 mOsmol/kg. LG-WLYS inhibited cell migration and angiogenesis. LG-WLYS solution induced macrophages to change from M1-type to M2-type, increased the content of antioxidant enzymes (glutathione, superoxide dismutase, and IL-10), decreased the levels of nitric oxide, malondialdehyde, TNF-α, IL-1ß, IL-6, COX-2, and iNOs, scavenging reactive oxygen species from the lesion site, inhibiting the apoptosis of chondrocytes, regulating inflammatory microenvironment, and decreasing inflammation response to exert the therapeutic effect for RA. In conclusion, LG-WLYS has outstanding therapeutic and preventive effects against RA and has enormous potential for further development.


Assuntos
Artrite Reumatoide , Oligoelementos , Ratos , Animais , Oligoelementos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Macrófagos , Fator de Necrose Tumoral alfa/farmacologia
6.
Acta Pharm Sin B ; 13(8): 3425-3443, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37655335

RESUMO

The extremely low bioavailability of oral paclitaxel (PTX) mainly due to the complicated gastrointestinal environment, the obstruction of intestinal mucus layer and epithelium barrier. Thus, it is of great significance to construct a coordinative delivery system which can overcome multiple intestinal physicochemical obstacles simultaneously. In this work, a high-density PEGylation-based glycocholic acid-decorated micelles (PTX@GNPs) was constructed by a novel polymer, 9-Fluorenylmethoxycarbonyl-polyethylene glycocholic acid (Fmoc-PEG-GCA). The Fmoc motif in this polymer could encapsulate PTX via π‒π stacking to form the core of micelles, and the low molecular weight and non-long hydrophobic chain of Fmoc ensures the high-density of PEG. Based on this versatile and flexible carriers, PTX@GNPs possess mucus trapping escape ability due to the flexible PEG, and excellent intestine epithelium targeting attributed to the high affinity of GCA with apical sodium-dependent bile acid transporter. The in vitro and in vivo results showed that this oral micelle could enhance oral bioavailability of PTX, and exhibited similar antitumor efficacy to Taxol injection via intravenous route. In addition, oral PTX@GNPs administered with lower dosage within shorter interval could increase in vivo retention time of PTX, which supposed to remodel immune microenvironment and enhance oral chemotherapy efficacy by synergistic effect.

7.
Adv Sci (Weinh) ; 10(31): e2303167, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37740428

RESUMO

Modulating the inflammatory microenvironment can inhibit the process of inflammatory diseases (IDs). A tri-cross-linked inflammatory microenvironment-responsive hydrogel with ideal mechanical properties achieves triggerable and sustained drug delivery and regulates the inflammatory microenvironment. Here, this study develops an inflammatory microenvironment-responsive hydrogel (OD-PP@SeNPs) composed of phenylboronic acid grafted polylysine (PP), oxidized dextran (OD), and selenium nanoparticles (SeNPs). The introduction of SeNPs as initiators and nano-fillers into the hydrogel results in extra cross-linking of the polymer network through hydrogen bonding. Based on Schiff base bonds, Phenylboronate ester bonds, and hydrogen bonds, a reactive oxygen species (ROS)/pH dual responsive hydrogel with a triple-network is achieved. The hydrogel has injectable, self-healing, adhesion, outstanding flexibility, suitable swelling capacity, optimal biodegradability, excellent stimuli-responsive active substance release performance, and prominent biocompatibility. Most importantly, the hydrogel with ROS scavenging and pH-regulating ability protects cells from oxidative stress and induces macrophages into M2 polarization to reduce inflammatory cytokines through PI3K/AKT/NF-κB and MAPK pathways, exerting anti-inflammatory effects and reshaping the inflammatory microenvironment, thereby effectively treating typical IDs, including S. aureus infected wound and rheumatoid arthritis in rats. In conclusion, this dynamically responsive injectable hydrogel with a triple-network structure provides an effective strategy to treat IDs, holding great promise in clinical application.


Assuntos
Nanopartículas , Selênio , Animais , Ratos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Hidrogéis , Espécies Reativas de Oxigênio , Staphylococcus aureus , Sistema de Sinalização das MAP Quinases
8.
Acta Pharm Sin B ; 13(9): 3659-3677, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719380

RESUMO

Peptide‒drug conjugates (PDCs) are drug delivery systems consisting of a drug covalently coupled to a multifunctional peptide via a cleavable linker. As an emerging prodrug strategy, PDCs not only preserve the function and bioactivity of the peptides but also release the drugs responsively with the cleavable property of the linkers. Given the ability to significantly improve the circulation stability and targeting of drugs in vivo and reduce the toxic side effects of drugs, PDCs have already been extensively applied in drug delivery. Herein, we review the types and mechanisms of peptides, linkers and drugs used to construct PDCs, and summarize the clinical applications and challenges of PDC drugs.

9.
Pharmaceutics ; 15(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631371

RESUMO

A keloid is a benign tumor manifested as abnormal fibroplasia on the surface of the skin. Curing keloids has become a major clinical challenge, and searching for new treatments and medications has become critical. In this study, we developed a LA67 liposome-loaded thermo-sensitive hydrogel (LA67-RL-Gel) with active targeting for treating keloids via peritumoral injection and explored the anti-keloid mechanism. Firstly, Arg-Gly-Asp (RGD) peptide-modified liposomes (LA67-RL) loaded with LA67 were prepared with a particle size of 105.9 nm and a Zeta potential of -27.4 mV, and an encapsulation efficiency of 89.6 ± 3.7%. We then constructed a thermo-sensitive hydrogel loaded with LA67-RL by poloxamer 407 and 188. The formulation was optimized through the Box-Behnken design, where the impact of the proportion of the ingredients on the quality of the hydrogel was evaluated entirely. The optimal formulation was 20.7% P407 and 2.1% P188, and the gelation time at 37 °C was 9.5 s. LA67-RL-Gel slowly released 92.2 ± 0.8% of LA67 at pH 6.5 PBS for 72 h. LA67-RL-Gel increased adhesion with KF cells; increased uptake; promoted KF cells apoptosis; inhibited cell proliferation; reduced α-SMA content; decreased collagen I, collagen III, and fibronectin deposition; inhibited angiogenesis; and modulated the keloid microenvironment, ultimately exerting anti-keloid effects. In summary, this simple, low-cost, and highly effective anti-keloid liposome hydrogel provides a novel approach for treating keloids and deserves further development.

10.
Pharmaceutics ; 15(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37514059

RESUMO

Prostate cancer (PC) is one of the common malignant tumors of the male genitourinary system. Here, we constructed PTX@ZIF-8, which is a metal-organic-framework-encapsulated drug delivery nanoparticle with paclitaxel (PTX) as a model drug, and further modified the synthesized peptide dimer (Di-PEG2000-COOH) onto the surface of PTX@ZIF-8 to prepare a nanotargeted drug delivery system (Di-PEG@PTX@ZIF-8) for the treatment of prostate cancer. This study investigated the morphology, particle size distribution, zeta potential, drug loading, encapsulation rate, stability, in vitro release behavior, and cytotoxicity of this targeted drug delivery system, and explored the uptake of Di-PEG@PTX@ZIF-8 by human prostate cancer Lncap cells at the in vitro cellular level, as well as the proliferation inhibition and promotion of apoptosis of Lncap cells by the composite nanoparticles. The results suggest that Di-PEG@PTX@ZIF-8, as a zeolitic imidazolate frameworks-8-loaded paclitaxel nanoparticle, has promising potential for the treatment of prostate cancer, which may provide a novel strategy for the delivery system targeting prostate cancer.

11.
Food Chem ; 418: 135939, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36948024

RESUMO

Epigallocatechin gallate (EGCG) has attracted the increasing attention of many researchers, especially in the field of tumor therapy. However, EGCG has poor fat solubility, low stability, low bioavailability, and a high effective dose in vivo. Traditional drug delivery methods are difficult to deliver the water-soluble EGCG efficiently and in high doses to tumor sites. To address these issues, a new type of strategy has been tried in this study to transform EGCG from a "Bioactive natural ingredient" into a "Bioactive drug carrier". Briefly, the EGCG was modified with a fat-soluble 9-fluorene methoxy carbonyl (Fmoc) motif, and the obtained EGCG-Fmoc showed a considerable improvement in lipid solubility and stability. Interestingly, EGCG-Fmoc obtained the characteristic of self-assembly in water, making it easier to take up by tumor cells. Furthermore, the self-assembled nanocomplex exhibited paclitaxel encapsulation performance and could achieve the dual delivery of EGCG and paclitaxel.


Assuntos
Catequina , Portadores de Fármacos , Micelas , Paclitaxel , Água
12.
Int J Nanomedicine ; 17: 6377-6398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545220

RESUMO

Introduction: The blood-brain barrier (BBB) is a key obstacle to the delivery of drugs into the brain. Therefore, it is essential to develop an advanced drug delivery nanoplatform to solve this problem. We previously screened a small rabies virus glycoprotein 15 (RVG15) peptide with 15 amino acids and observed that most of the RVG15-modified nanoparticles entered the brain within 1 h of administration. The high BBB penetrability gives RVG15 great potential for brain-targeted drug delivery systems. Moreover, a multifunctional integrated nanoplatform with a high drug-loading capacity, tunable functionality, and controlled drug release is crucial for tumor treatment. Zeolitic imidazolate framework (ZIF-8) is a promising nanodrug delivery system. Methods: Inspired by the biomimetic concept, we designed RVG15-coated biomimetic ZIF-8 nanoparticles (RVG15-PEG@DTX@ZIF-8) for docetaxel (DTX) delivery to achieve efficient glioblastoma elimination in mice. This bionic nanotherapeutic system was prepared by one-pot encapsulation, followed by coating with RVG15-PEG conjugates. The size, morphology, stability, drug-loading capacity, and release of RVG15-PEG@DTX@ZIF-8 were thoroughly investigated. Additionally, we performed in vitro evaluation, cell uptake capacity, BBB penetration, and anti-migratory ability. We also conducted an in vivo evaluation of the biodistribution and anti-glioma efficacy of this bionic nanotherapeutic system in a mouse mode. Results: In vitro studies showed that, this bionic nanotherapeutic system exhibited excellent targeting efficiency and safety in HBMECs and C6 cells and high efficiency in crossing the BBB. Furthermore, the nanoparticles cause rapid DTX accumulation in the brain, allowing deeper penetration into glioma tumors. In vivo antitumor assay results indicated that RVG15-PEG@DTX@ZIF-8 significantly inhibited glioma growth and metastasis, thereby improving the survival of tumor-bearing mice. Conclusion: Our study demonstrates that our bionic nanotherapeutic system using RVG15 peptides is a promising and powerful tool for crossing the BBB and treating glioblastoma.


Assuntos
Glioblastoma , Glioma , Nanopartículas , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Distribuição Tecidual , Biomimética , Linhagem Celular Tumoral , Glioblastoma/patologia , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Docetaxel/farmacologia , Peptídeos/química , Nanopartículas/química
14.
Pharmaceutics ; 14(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35890264

RESUMO

Combinations of two different therapeutic modalities of VEGF inhibitors against angiogenesis can cooperatively impede breast cancer tumor growth and enhance therapeutic efficacy. Itraconazole (ITZ) is a conventional antifungal drug with high safety; however, it has been repurposed to be a multi target anti-angiogenesis agent for cancer therapy in recent years. In the present study, composite nanoparticles co-loaded with ITZ and VEGF siRNA were prepared in order to investigate their anti-angiogenesis efficacy and synergistic anticancer effect against breast cancer. The nanoparticles had a suitable particle size (117.9 ± 10.3 nm) and weak positive surface charge (6.69 ± 2.46 mV), as well as good stability and drug release profile in vitro. Moreover, the nanoparticles successfully escaped from endosomes and realized cell apoptosis and cell proliferation inhibition in vitro. In vitro and in vivo experiments showed that the nanoparticles could induce the silencing of VEGF-related expressions as well as anti-angiogenesis efficacy, and the co-loaded ITZ-VEGF siRNA NPs could inhibit tumor growth effectively with low toxicity and side effects. Taken together, the as-prepared delivery vehicles are a simple and safe nano-platform that improves the antitumor efficacy of VEGF siRNA and ITZ, which allows the repositioning of the generic drug ITZ as a great candidate for antitumor therapy.

15.
J Nanobiotechnology ; 20(1): 281, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705976

RESUMO

BACKGROUND: Oral chemotherapy is preferred for patients with cancer owing to its multiple advantages, including convenience, better patient compliance, and improved safety. Nevertheless, various physical barriers exist in this route that hamper the development of oral chemotherapeutic formulations, including destruction of drugs in the gastrointestinal tract (GIT), low permeability in enterocytes, and short residence time in the intestine. To overcome these limitations, it is necessary to design an efficient oral drug delivery system with high efficacy and improved safety. RESULTS: Herein, we designed novel glycocholic acid (GCA)-functionalized double layer nanoparticles (GCA-NPs), which can act via an endogenous pathway and in a temporally controlled manner in the intestine, to enhance the oral bioavailability of hydrophobic chemotherapeutic drugs such as paclitaxel (PTX). GCA-NPs were composed of quercetin (Qu)-modified liposomes (QL) coated with GCA-chitosan oligosaccharide conjugate (GCOS). The GCA-NPs thus prepared showed prolonged intestinal retention time and good GIT stability due to the presence of chitosan oligosaccharide (COS) and enhanced active transportation via intestinal apical sodium-dependent bile acid transporter (ASBT) due to the presence of GCA. GCA-NPs also efficiently inhibited intestinal P-gp induced by Qu. PTX-loaded GCA-NPs (PTX@GCA-NPs) had a particle size of 84 nm and an entrapment efficiency of 98% with good stability. As a result, the oral bioavailability of PTX was increased 19-fold compared to that of oral Taxol® at the same dose. Oral PTX@GCA-NPs displayed superior antitumor efficacy and better safety than Taxol® when administered intravenously. CONCLUSIONS: Our novel drug delivery system showed remarkable efficacy in overcoming multiple limitations and is a promising carrier for oral delivery of multiple drugs, which addresses several challenges in oral delivery in the clinical context.


Assuntos
Quitosana , Nanopartículas , Administração Oral , Biomimética , Quitosana/química , Portadores de Fármacos/química , Humanos , Íleo , Nanopartículas/química , Oligossacarídeos , Paclitaxel , Quercetina
16.
Pharmaceutics ; 14(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35631549

RESUMO

Primary prostate cancer (PC) progresses to castration-resistant PC (CRPC) during androgen deprivation therapy (ADR) in early stages of prostate cancer. Thus, rather than blocking the androgen-related pathway further, docetaxel (DTX)-based therapy has become the most effective and standard first-line chemotherapy for CRPC. Although the therapy is successful in prolonging the survival of patients with CRPC, chemotherapy resistance develops due to the abnormal activation of the androgen receptor (AR) signaling pathway. Thus, to optimize DTX efficacy, continued maximum suppression of androgen levels and AR signaling is required. Here, we designed a prostate-specific membrane antigen (PSMA)-targeted nanosystem to carry both DTX and AR siRNA (Di-PP/AR-siRNA/DTX) for CRPC treatment. Specifically, DTX was encapsulated into the hydrophobic inner layer, and the AR siRNA was then condensed with the cationic PEI block in the hydrophilic outer layer of the PEI-PLGA polymeric micelles. The micelles were further coated with PSMA-targeted anionic polyethylene glycol-polyaspartic acid (Di-PEG-PLD). In vitro and in vivo results demonstrated that the resulting Di-PP/AR-siRNA/DTX exhibited prolonged blood circulation, selective targeting, and enhanced antitumor effects. Consequently, Di-PP/AR-siRNA/DTX holds great potential for efficient CRPC treatment by combining chemotherapy and siRNA silencing of androgen-related signaling pathways.

17.
Biomaterials ; 283: 121440, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245731

RESUMO

Colon cancer is emerging as one of the most prevalent cancers globally. Oral colonic drug delivery systems have attracted considerable attention in the treatment of orthotopic colon cancer due to their superior properties. However, the particularity and complexity of the gastrointestinal structure are a hindrance to the safe delivery of drugs to the target site of the colon tumor. Herein, to achieve an effective delivery system specifically targeting the colon, we designed paclitaxel (PTX)-loaded oral colon double-targeted nanoparticles using polylactic acid-polyethyleneimine (PLA-PEI) and hyaluronic acid-inulin (HA-IN). IN is enzyme sensitive and hardly degraded in the upper digestive tract; as such, it can ensure the safe delivery of nanoparticles to the colon. The "IN shell" is degraded by colon-specific bacteria at the colon site. The exposed HA not only promotes intestinal mucosal crossing of nanoparticles, but also acts as the target of CD44 and plays an active targeting role in tumor tissues. The action of the proton sponge effect of PEI induces the successful release of the nanoparticle. The prepared nanoparticles have a negative charge of -19.5 ± 1.2 mV and a size of 176.7 ± 0.3 nm with a narrow PDI of 0.148 ± 0.004. C26 cells were used for in vitro anticancer studies, including fluorescence staining and flow cytometry, and to explore inhibition of proliferation. The analysis demonstrated that the nanoparticles were more efficiently taken up by cancer cells, exhibiting greater cytotoxicity and apoptosis-inducing ability compared to free drugs. Moreover, in vivo studies revealed that the nanoparticles could remain in vivo for 24 h and accumulate at the tumor site. These data provide evidence of the therapeutic effect on orthotopic colon cancer. Also, safety evaluation results demonstrated that PLA-PEI/HA-IN is a safe drug delivery vector, therefore, holds great promise as a new therapeutic strategy for orthotopic colon cancer treatment.


Assuntos
Neoplasias do Colo , Nanopartículas , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Ácido Hialurônico/química , Inulina/uso terapêutico , Nanopartículas/química , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
18.
ACS Appl Mater Interfaces ; 14(8): 10102-10116, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175043

RESUMO

Cancer-associated fibroblasts (CAFs), an important type of stromal cells in the tumor microenvironment (TME), are responsible for creating physical barriers to drug delivery and penetration in tumor tissues. Thus, effectively downregulating CAFs to destroy the physical barrier may allow enhanced penetration and accumulation of therapeutic drugs, thereby improving therapeutic outcomes. Herein, a matrix metalloproteinase (MMP)-triggered dual-targeting hybrid micelle-in-liposome system (RPM@NLQ) was constructed to sequentially deliver quercetin (Que) and paclitaxel (PTX) for fibrotic TME remodeling and chemotherapy potentiation. Specifically, antifibrotic Que and small-sized RGD-modified micelles containing PTX (RPM) were co-encapsulated into MMP-sensitive liposomes, and the liposomes were further adorned with the NGR peptide (NL) as the targeting moiety. The resulting RPM@NLQ first specifically accumulated at the tumor site under the guidance of the NGR peptide after intravenous administration and then released Que and RPM in response to the extensive expression of MMP in the TME. Subsequently, Que was retained in the stroma to remarkably downregulate fibrosis and decrease the stromal barrier by downregulating Wnt16 expression in CAFs, which further resulted in a significant increase of RPM for deeper tumor. Thus, RPM could precisely target and kill breast cancer cells locally. Consequently, prolonged blood circulation, selective cascade targeting of tumor tissue and tumor cells, enhanced penetration, and excellent antitumor efficacy have been demonstrated in vitro and in vivo. In conclusion, as-designed sequential delivery systems for fibrotic TME remodeling and chemotherapy potentiation may provide a promising adjuvant therapeutic strategy for breast and other CAF-rich tumors.


Assuntos
Lipossomos , Paclitaxel , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Fibrose , Humanos , Lipossomos/farmacologia , Micelas , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Quercetina/farmacologia , Microambiente Tumoral
19.
J Nanobiotechnology ; 19(1): 453, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963449

RESUMO

BACKGROUND: The interactions between nanoparticles (NPs) and plasma proteins form a protein corona around NPs after entering the biological environment, which provides new biological properties to NPs and mediates their interactions with cells and biological barriers. Given the inevitable interactions, we regard nanoparticle‒protein interactions as a tool for designing protein corona-mediated drug delivery systems. Herein, we demonstrate the successful application of protein corona-mediated brain-targeted nanomicelles in the treatment of glioma, loading them with paclitaxel (PTX), and decorating them with amyloid ß-protein (Aß)-CN peptide (PTX/Aß-CN-PMs). Aß-CN peptide, like the Aß1-42 peptide, specifically binds to the lipid-binding domain of apolipoprotein E (ApoE) in vivo to form the ApoE-enriched protein corona surrounding Aß-CN-PMs (ApoE/PTX/Aß-CN-PMs). The receptor-binding domain of the ApoE then combines with low-density lipoprotein receptor (LDLr) and LDLr-related protein 1 receptor (LRP1r) expressed in the blood-brain barrier and glioma, effectively mediating brain-targeted delivery. METHODS: PTX/Aß-CN-PMs were prepared using a film hydration method with sonication, which was simple and feasible. The specific formation of the ApoE-enriched protein corona around nanoparticles was characterized by Western blotting analysis and LC-MS/MS. The in vitro physicochemical properties and in vivo anti-glioma effects of PTX/Aß-CN-PMs were also well studied. RESULTS: The average size and zeta potential of PTX/Aß-CN-PMs and ApoE/PTX/Aß-CN-PMs were 103.1 nm, 172.3 nm, 7.23 mV, and 0.715 mV, respectively. PTX was efficiently loaded into PTX/Aß-CN-PMs, and the PTX release from rhApoE/PTX/Aß-CN-PMs exhibited a sustained-release pattern in vitro. The formation of the ApoE-enriched protein corona significantly improved the cellular uptake of Aß-CN-PMs on C6 cells and human umbilical vein endothelial cells (HUVECs) and enhanced permeability to the blood-brain tumor barrier in vitro. Meanwhile, PTX/Aß-CN-PMs with ApoE-enriched protein corona had a greater ability to inhibit cell proliferation and induce cell apoptosis than taxol. Importantly, PTX/Aß-CN-PMs exhibited better anti-glioma effects and tissue distribution profile with rapid accumulation in glioma tissues in vivo and prolonged median survival of glioma-bearing mice compared to those associated with PMs without the ApoE protein corona. CONCLUSIONS: The designed PTX/Aß-CN-PMs exhibited significantly enhanced anti-glioma efficacy. Importantly, this study provided a strategy for the rational design of a protein corona-based brain-targeted drug delivery system. More crucially, we utilized the unfavorable side of the protein corona and converted it into an advantage to achieve brain-targeted drug delivery.


Assuntos
Antineoplásicos/administração & dosagem , Apolipoproteínas E/administração & dosagem , Encéfalo/efeitos dos fármacos , Glioma/tratamento farmacológico , Nanopartículas/administração & dosagem , Coroa de Proteína , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apolipoproteínas E/química , Apolipoproteínas E/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Glioma/metabolismo , Humanos , Camundongos , Micelas , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/farmacocinética , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacocinética , Poliésteres/administração & dosagem , Poliésteres/química , Poliésteres/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Coroa de Proteína/química
20.
Pharmaceutics ; 13(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834192

RESUMO

Micelle is mainly used for drug delivery and is prepared from amphiphilic block copolymers. It can be formed into an obvious core-shell structure that can incorporate liposoluble drugs. However, micelles are not suitable for the encapsulation of water-soluble drugs, and it is also difficult to maintain stability in the systemic circulation. To solve these problems, a type of polymer material, Fmoc-Lys-PEG and Fmoc-Lys-PEG-RGD, was designed and synthesized. These copolymers could self-assemble into micelles driven by π-π stacking and the hydrophobic interaction of 9-fluorenylmethoxycarbony (Fmoc) and, at the same time, form a framework for a hydrogen-bonding environment in the core. Mitomycin C (MMC), as a water-soluble drug, can be encapsulated into micelles by hydrogen-bonding interactions. The interaction force between MMC and the polymers was analyzed by molecular docking simulation and Fourier transform infrared (FTIR). It was concluded that the optimal binding conformation can be obtained, and that the main force between the MMC and polymers is hydrogen bonding. Different types of MMC nanoparticles (NPs) were prepared and the physicochemical properties of them were systematically evaluated. The pharmacodynamics of the MMC NPs in vitro and in vivo were also studied. The results show that MMC NPs had a high uptake efficiency, could promote cell apoptosis, and had a strong inhibitory effect on cell proliferation. More importantly, the as-prepared NPs could effectively induce tumor cell apoptosis and inhibit tumor growth and metastasis in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA