Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732469

RESUMO

During the period preceding the vegetation growing season (GS), temperature emerges as the pivotal factor determining phenology in northern terrestrial ecosystems. Despite extensive research on the impact of daily mean temperature (Tmean) during the preseason period, the influence of diurnal temperature range (DTR) on vegetation photosynthetic phenology (i.e., the impact of the plant photosynthetic cycle on seasonal time scale) has largely been neglected. Using a long-term vegetation photosynthetic phenology dataset and historical climate data, we examine vegetation photosynthetic phenology dynamics and responses to climate change across the mid-high latitudes of the Northern Hemisphere from 2001 to 2020. Our data reveal an advancing trend in the start of the GS (SOS) by -0.15 days per year (days yr-1), affecting 72.1% of the studied area. This is particularly pronounced in western Canada, Alaska, eastern Asia, and latitudes north of 60°N. Conversely, the end of the GS (EOS) displays a delaying trend of 0.17 days yr-1, impacting 62.4% of the studied area, especially northern North America and northern Eurasia. The collective influence of an earlier SOS and a delayed EOS has resulted in the notably prolonged length of the GS (LOS) by 0.32 days yr-1 in the last two decades, affecting 70.9% of the studied area, with Eurasia and western North America being particularly noteworthy. Partial correlation coefficients of the SOS with preseason Tmean, DTR, and accumulated precipitation exhibited negative values in 98.4%, 93.0%, and 39.2% of the study area, respectively. However, there were distinct regional variations in the influence of climate factors on the EOS. The partial correlation coefficients of the EOS with preseason Tmean, DTR, and precipitation were positive in 58.6%, 50.1%, and 36.3% of the region, respectively. Our findings unveil the intricate mechanisms influencing vegetation photosynthetic phenology, holding crucial significance in understanding the dynamics of carbon sequestration within terrestrial ecosystems amidst climate change.

2.
Eur J Med Res ; 29(1): 219, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576045

RESUMO

PURPOSE: Colorectal cancer (CRC) is a highly heterogeneous malignancy with an unfavorable prognosis. The purpose of this study was to address the heterogeneity of CRC by categorizing it into ion channel subtypes, and to develop a predictive modeling based on ion channel genes to predict the survival and immunological states of patients with CRC. The model will provide guidance for personalized immunotherapy and drug treatment. METHODS: A consistent clustering method was used to classify 619 CRC samples based on the expression of 279 ion channel genes. Such a method was allowed to investigate the relationship between molecular subtypes, prognosis, and immune infiltration. Furthermore, a predictive modeling was constructed for ion channels to evaluate the ion channel properties of individual tumors using the least absolute shrinkage and selection operator. The expression patterns of the characteristic genes were validated through molecular biology experiments. The effect of potassium channel tetramerization domain containing 9 (KCTD9) on CRC was verified by cellular functional experiments. RESULTS: Four distinct ion channel subtypes were identified in CRC, each characterized by unique prognosis and immune infiltration patterns. Notably, Ion Cluster3 exhibited high levels of immune infiltration and a favorable prognosis, while Ion Cluster4 showed relatively lower levels of immune infiltration and a poorer prognosis. The ion channel score could predict overall survival, with lower scores correlated with longer survival. This score served as an independent prognostic factor and presented an excellent predictive efficacy in the nomogram. In addition, the score was closely related to immune infiltration, immunotherapy response, and chemotherapy sensitivity. Experimental evidence further confirmed that low expression of KCTD9 in tumor tissues was associated with an unfavorable prognosis in patients with CRC. The cellular functional experiments demonstrated that KCTD9 inhibited the proliferation, migration and invasion capabilities of LOVO cells. CONCLUSIONS: Ion channel subtyping and scoring can effectively predict the prognosis and evaluate the immune microenvironment, immunotherapy response, and drug sensitivity in patients with CRC.


Assuntos
Neoplasias Colorretais , Canais Iônicos , Humanos , Canais Iônicos/genética , Nomogramas , Imunoterapia , Neoplasias Colorretais/genética , Prognóstico , Microambiente Tumoral
3.
J Magn Reson Imaging ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490816

RESUMO

BACKGROUND: Portal vein thrombosis (PVT) is thought to arise from stagnant blood flow, yet conclusive evidence is lacking. Relative residence time (RRT) assessed using 4D Flow MRI may offer insight into portal flow stagnation. PURPOSE: To explore the relationship between RRT values and the presence of PVT in cirrhotic participants. STUDY TYPE: Prospective. POPULATION: Forty-eight participants with liver cirrhosis (27 males, median age 67 years [IQR: 57-73]) and 20 healthy control participants (12 males, median age 45 years [IQR: 40-54]). FIELD STRENGTH/SEQUENCE: 3 T/4D Flow MRI. ASSESSMENT: Laboratory (liver and kidney function test results and platelet count) and clinical data (presence of tumors and other imaging findings), and portal hemodynamics derived from 4D Flow MRI (spatiotemporally averaged RRT [RRT-mean], flow velocity, and flow rate) were analyzed. STATISTICAL TESTS: We used multivariable logistic regression, adjusted by selected covariates through the Lasso method, to explore whether RRT-mean is an independent risk factor for PVT. The area under the ROC curve (AUC) was also calculated to assess the model's discriminative ability. P < 0.05 indicated statistical significance. RESULTS: The liver cirrhosis group consisted of 16 participants with PVT and 32 without PVT. Higher RRT-mean values (odds ratio [OR] 11.4 [95% CI: 2.19, 118]) and lower platelet count (OR 0.98 per 1000 µL [95% CI: 0.96, 0.99]) were independent risk factors for PVT. The incorporation of RRT-mean (AUC, 0.77) alongside platelet count (AUC, 0.75) resulted in an AUC of 0.84. When including healthy control participants, RRT-mean had an adjusted OR of 12.4 and the AUC of the combined model (RRT-mean and platelet count) was 0.90. DATA CONCLUSION: Prolonged RRT values and low platelet count were significantly associated with the presence of PVT in cirrhotic participants. RRT values derived from 4D Flow MRI may have potential clinical relevance in the management of PVT. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

4.
Food Chem X ; 22: 101306, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38550882

RESUMO

Silicon can mitigate biotic and abiotic stresses in various plants; however, its effects on tomato quality under normal growth conditions are remain unclear. We used a randomized design with four Si treatments, CON (0 mmol/L), T1 (0.6 mmol/L), T2 (1.2 mmol/L), and T3 (1.8 mmol/L) on tomato fruit components Chlorogenic acid and rutin, among polyphenolic components, were increased by 56.99% and 20.31%, respectively, with T2 treatment compared to CON concentrations. T2 increased the sugar-acid ratio by 19.21%, compared to that with the CON treatment, and increased fruit Ca and Mg contents, compared to those with other treatments, improving the characteristic aroma. Furthermore, silicon application reduced the abscisic acid content by 112%, promoting ripening. Endogenous gibberellin, auxin, and salicylic acid, which retard fruit ripening and softening, were increased by 34.96%, 14.56%, and 35.21%, respectively. These findings have far-reaching implications for exogenous Si applications to enrich tomato nutritional and flavor qualities.

5.
Math Biosci Eng ; 21(3): 4669-4697, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549344

RESUMO

Segmenting plant organs is a crucial step in extracting plant phenotypes. Despite the advancements in point-based neural networks, the field of plant point cloud segmentation suffers from a lack of adequate datasets. In this study, we addressed this issue by generating Arabidopsis models using L-system and proposing the surface-weighted sampling method. This approach enables automated point sampling and annotation, resulting in fully annotated point clouds. To create the Arabidopsis dataset, we employed Voxel Centroid Sampling and Random Sampling as point cloud downsampling methods, effectively reducing the number of points. To enhance the efficiency of semantic segmentation in plant point clouds, we introduced the Plant Stratified Transformer. This network is an improved version of the Stratified Transformer, incorporating the Fast Downsample Layer. Our improved network underwent training and testing on our dataset, and we compared its performance with PointNet++, PAConv, and the original Stratified Transformer network. For semantic segmentation, our improved network achieved mean Precision, Recall, F1-score and IoU of 84.20, 83.03, 83.61 and 73.11%, respectively. It outperformed PointNet++ and PAConv and performed similarly to the original network. Regarding efficiency, the training time and inference time were 714.3 and 597.9 ms, respectively, which were reduced by 320.9 and 271.8 ms, respectively, compared to the original network. The improved network significantly accelerated the speed of feeding point clouds into the network while maintaining segmentation performance. We demonstrated the potential of virtual plants and deep learning methods in rapidly extracting plant phenotypes, contributing to the advancement of plant phenotype research.


Assuntos
Arabidopsis , Fontes de Energia Elétrica , Redes Neurais de Computação , Fenótipo , Projetos de Pesquisa
6.
Heliyon ; 10(4): e25399, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370247

RESUMO

Owing to the decreased levels of receptors in the peripheral and central nervous systems, the functions of various organ systems decline in older patients. When administering anesthesia to older patients, it is necessary to consider the effects of medication on the homeostatic balance. Remimazolam, a new benzodiazepine, was recently developed as an anesthetic drug that has shown promise in clinical anesthesia application owing to its molecular structure, targets, pharmacodynamics, and pharmacokinetic characteristics. Remimazolam exhibits a rapid onset and metabolism, with minor effects on liver and kidney functions. Moreover, the drug has a specific antagonist, flumazenil. It is safer to use in older patients than other anesthetic sedatives and has been widely used since its introduction. Comparisons of the pharmacokinetics, metabolic pathways, effects on target organs, and hemodynamics of different drugs with those of commonly used anesthetic sedative drugs are useful to inform clinical practice. This article elaborates on the benefits of remimazolam compared with those of other anesthetic sedatives for sedation in older patients to demonstrate how it offers a new option for anesthetics in older patients. In cases involving older patients with increased clinical complexities or very old patients requiring anesthesia, remimazolam can be selected as the preferred anesthetic sedative, as outlined in this review.

7.
J Pharm Biomed Anal ; 241: 115978, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237540

RESUMO

Colorectal cancer (CRC) incidence in younger adults has been steadily rising, warranting an in-depth investigation into the distinctions between early-onset CRC (EOCRC, < 50 years) and late-onset CRC (LOCRC, ≥ 50 years). Despite extensive study of clinical, pathological, and molecular traits, differentiating EOCRC from LOCRC and identifying potential biomarkers remain elusive. We analyzed plasma samples from healthy individuals, EOCRC, and LOCRC patients using liquid-chromatography mass spectrometry (LC/MS)-based metabolomics and lipidomics. Distinct polar metabolite and lipid profiles with significant metabolites altered in CRC group (e.g., choline and DG 40:4) were identified. Notably, EOCRC exhibited distinct polar metabolomic and differential lipidomic profiles compared to LOCRC, with polar metabolites like aminoadipate and uridine contributing significantly to the difference, and originating from pathways such as lysine biosynthesis and nucleotide metabolism. Furthermore, gene set enrichment analysis (GSEA) using independent TCGA gene expression data identified pathways significantly enriched in either EOCRC or LOCRC. Integrating gene expression and metabolomics data revealed numerous associations differentiating EOCRC and LOCRC. Our multi-omics integration underscores critical molecular distinctions, offers insights into the EOCRC development mechanisms and potential plasma biomarkers for diagnosis.


Assuntos
Neoplasias Colorretais , Adulto , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Lipidômica , Biomarcadores
8.
Cancer Res Commun ; 4(2): 293-302, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38259095

RESUMO

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. SIGNIFICANCE: Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.


Assuntos
Microbiota , Humanos , Filogenia , Microbiota/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala
9.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 280-290, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273781

RESUMO

Acute liver failure (ALF) is a significant global issue with elevated morbidity and mortality rates. There is an urgent and pressing need for secure and effective treatments. Ferroptosis, a novel iron-dependent regulation of cell death, plays a significant role in multiple pathological processes associated with liver diseases, including ALF. Several studies have demonstrated that mesenchymal stem cells (MSCs) have promising therapeutic potential in the treatment of ALF. This study aims to investigate the positive effects of MSCs against ferroptosis in an ALF model and explore the underlying molecular mechanisms of their therapeutic function. Our results show that intravenously injected MSCs protect against ferroptosis in ALF mouse models. MSCs decrease iron deposition in the liver of ALF mice by downregulating hepcidin level and upregulating FPN1 level. MSCs labelled with Dil are mainly observed in the hepatic sinusoid and exhibit colocalization with the macrophage marker CD11b fluorescence. ELISA demonstrates a high level of IGF1 in the CCL 4+MSC group. Suppressing the IGF1 effect by the PPP blocks the therapeutic effect of MSCs against ferroptosis in ALF mice. Furthermore, disruption of IGF1 function results in iron deposition in the liver tissue due to impaired inhibitory effects of MSCs on hepcidin level. Our findings suggest that MSCs alleviate ferroptosis induced by disorders of iron metabolism in ALF mice by elevating IGF1 level. Moreover, MSCs are identified as a promising cell source for ferroptosis treatment in ALF mice.


Assuntos
Ferroptose , Falência Hepática Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Hepcidinas/efeitos adversos , Hepcidinas/metabolismo , Falência Hepática Aguda/terapia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Transplante de Células-Tronco Mesenquimais/métodos , Fator de Crescimento Insulin-Like I/metabolismo
10.
Foods ; 13(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254524

RESUMO

Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L-1 [CK], 0.6 mmol·L-1 [T1], 1.2 mmol·L-1 [T2], and 1.8 mmol·L-1 [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (PDS), the lycopene ε-cyclase gene (LCY-E), and the zeaxanthin cyclooxygenase gene (ZEP) in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L-1 exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions.

11.
Int J Cardiovasc Imaging ; 40(2): 261-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38082073

RESUMO

The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. To evaluate the performance of PTC triggering in a comprehensive CMR exam. Fifteen volunteers and 20 patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.


Assuntos
Meios de Contraste , Gadolínio , Humanos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Cafeína , Espectroscopia de Ressonância Magnética , Imagem Cinética por Ressonância Magnética
12.
Eur Radiol ; 34(3): 1692-1703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37658887

RESUMO

OBJECTIVES: 2D real-time (RT) phase-contrast (PC) MRI is a promising alternative to conventional PC MRI, which overcomes problems due to irregular heartbeats or poor respiratory control. This study aims to evaluate a prototype compressed sensing (CS)-accelerated 2D RT-PC MRI technique with shared velocity encoding (SVE) for accurate beat-to-beat flow measurements. METHODS: The CS RT-PC technique was implemented using a single-shot fast RF-spoiled gradient echo with SVE by symmetric velocity encoding, and acquired with a temporal resolution of 51-56.5 ms in 1-5 heartbeats. Both aortic dissection phantom (n = 8) and volunteer (n = 7) studies were conducted using the prototype CS RT (CS, R = 8), the conventional (GRAPPA, R = 2), and the fully sampled PC sequences on a 3T clinical system. Flow parameters including peak velocity, peak flow rate, net flow rate, and maximum velocity were calculated to compare the performance between different methods using linear regression, intraclass correlation (ICC), and Bland-Altman analyses. RESULTS: Comparisons of the flow measurements at all locations in the phantoms demonstrated an excellent correlation (all R2 ≥ 0.93) and agreement (all ICC ≥ 0.97) with negligible means of differences. In healthy volunteers, a similarly good correlation (all R2 ≥ 0.80) and agreement (all ICC ≥ 0.90) were observed; however, CS RT slightly underestimated the maximum velocities and flow rates (~ 12%). CONCLUSION: The highly accelerated CS RT-PC technique is feasible for the evaluation of flow patterns without requiring breath-holding, and it allows for rapid flow assessment in patients with arrhythmia or poor breath-hold capacity. CLINICAL RELEVANCE STATEMENT: The free-breathing real-time flow MRI technique offers improved spatial and temporal resolutions, as well as the ability to image individual cardiac cycles, resulting in superior image quality compared to the conventional PC technique when imaging patients with arrhythmias, especially those with atrial fibrillation. KEY POINTS: • The highly accelerated prototype CS RT-PC MRI technique with improved temporal resolution by the concept of SVE is feasible for beat-to-beat flow evaluation without requiring breath-holding. • The results of the phantom and in vivo quantitative flow evaluation show the ability of the prototype CS RT-PC technique to obtain reliable flow measurements similarly to the conventional PC MRI. • With less than 12% underestimation, excellent agreements between the two techniques were shown for the measurements of peak velocities and flow rates.


Assuntos
Fibrilação Atrial , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Velocidade do Fluxo Sanguíneo , Reprodutibilidade dos Testes
13.
Sleep Breath ; 28(1): 133-149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37428351

RESUMO

PURPOSE: This study evaluated the effects of chronic intermittent hypoxia (CIH) at different times on the mitochondria of mouse hearts and H9C2 cardiomyocytes to determine the role of the cannabinoid receptor 1 (CB1R)/adenosine 5'-monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) signaling pathway. METHODS: Animal and cellular CIH models were prepared in an intermittent hypoxia chamber at different times. The cardiac function of mice was determined, and heart tissue and ultrastructural changes were observed. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential were detected, and MitoTracker™ staining was performed to observe cardiomyocyte mitochondria. Western blot, immunohistochemistry, and cellular immunofluorescence were also performed. RESULTS: In the short-term CIH group, increases in mouse ejection fraction (EF) and heart rate (HR); mitochondrial division; ROS and mitochondrial membrane potential; and the expression levels of CB1R, AMPK, and PGC-1α were observed in vivo and in vitro. In the long-term CIH group, the EF and HR increased, the myocardial injury and mitochondrial damage were more severe, mitochondrial synthesis decreased, the apoptosis percentage and ROS increased, mitochondrial fragmentation increased, membrane potential decreased, CB1R expression increased, and AMPK and PGC-1α expression levels decreased. Targeted blocking of CB1R can increase AMPK and PGC-1α, reduce damage attributed to long-term CIH in mouse hearts and H9C2 cells, and promote mitochondrial synthesis. CONCLUSION: Short-term CIH can directly activate the AMPK/PGC-1α pathway, promote mitochondrial synthesis in cardiomyocytes, and protect cardiac structure and function. Long-term CIH can increase CB1R expression and inhibit the AMPK/PGC-1α pathway, resulting in structural damage, the disturbance of myocardial mitochondria synthesis, and further alterations in the cardiac structure. After targeted blocking of CB1R, levels of AMPK and PGC-1α increased, alleviating damage to the heart and cardiomyocytes caused by long-term CIH.


Assuntos
Proteínas Quinases Ativadas por AMP , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Hipóxia/metabolismo
14.
Int J Cardiovasc Imaging ; 40(1): 93-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37874445

RESUMO

This study aims to evaluate the accuracy and reliability of the cardiac and respiratory signals extracted from Pilot Tone (PT) in patients clinically referred for cardiovascular MRI. Twenty-three patients were scanned under free-breathing conditions using a balanced steady-state free-precession real-time (RT) cine sequence on a 1.5T scanner. The PT signal was generated by a built-in PT transmitter integrated within the body array coil, and retrospectively processed to extract respiratory and cardiac signals. For comparison, ECG and BioMatrix (BM) respiratory sensor signals were also synchronously recorded. To assess the performances of PT, ECG, and BM, cardiac and respiratory signals extracted from the RT cine images were used as the ground truth. The respiratory motion extracted from PT correlated positively with the image-derived respiratory signal in all cases and showed a stronger correlation (absolute coefficient: 0.95 ± 0.09) than BM (0.72 ± 0.24). For the cardiac signal, PT trigger jitter (standard deviation of PT trigger locations relative to ECG triggers) ranged from 6.6 to 83.3 ms, with a median of 21.8 ms. The mean absolute difference between the PT and corresponding ECG cardiac cycle duration was less than 5% of the average ECG RR interval for 21 out of 23 patients. We did not observe a significant linear dependence (p > 0.28) of PT delay and PT jitter on the patients' BMI or cardiac cycle duration. This study demonstrates the potential of PT to monitor both respiratory and cardiac motion in patients clinically referred for cardiovascular MRI.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Movimento (Física)
15.
BMC Plant Biol ; 23(1): 649, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102554

RESUMO

BACKGROUND: Brassinolide, known as the seventh plant hormone, can improve the photosynthetic capacity of plants, promote plant growth and development, promote the formation of horticultural crop yield, improve the quality of horticultural crops, and also improve the ability of plants to resist biological and abiotic stresses. RESULTS: The effects of different concentrations of exogenously sprayed 2,4-epibrassinolide (EBR) on growth, physiological and photosynthetic characteristics of 'All-round large leaf coriander' were studied in substrate culture. The results showed that 0.05, 0.1, and 0.5 mg.L- 1 EBR promoted the growth of coriander and increased the aboveground fresh and dry weights, with 0.5 mg.L- 1 EBR having the most significant effect. Spraying 0.1 mg.L- 1 EBR increased the content of soluble sugars and protein of coriander leaves. Spraying 0.1 and 0.5 mg.L- 1 EBR significantly increased the chlorophyll content and photosynthetic parameters of coriander leaves, and 0.5 mg.L- 1 EBR also significantly increased the chlorophyll fluorescence parameters of coriander leaves. Spraying 0.5 mg.L- 1 EBR upregulated the expression of CsRbcS, CsFBPase, and CsAld. Correlation analysis showed that aboveground fresh weight under exogenous EBR treatment was significantly positively correlated with aboveground dry weight, plant height, Pn, Gs, Ci, and CsAld (P < 0.05), and soluble sugar content was significantly positively correlated with the number of leaves, Y(II), qP, and CsRbcS. The results of the principal component analysis (PCA) showed that there was a significant separation between the treatment and the control groups. Spraying 0.5 mg.L- 1 EBR can promote the growth of coriander, improve the quality of coriander leaves, and strengthen coriander leaf photosynthetic capacity. This study provides new insights into the promotion of coriander growth and development following the application of exogenous EBR. CONCLUSION: Exogenous EBR treatment increased coriander plant height, leaf growth and aboveground dry weight, and enhanced photosynthesis. Exogenous spraying of 0.5 mg.L- 1 EBR had the most significant effect.


Assuntos
Coriandrum , Fotossíntese , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/metabolismo
16.
Plants (Basel) ; 12(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140502

RESUMO

Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. This study investigated optimal nitrogen forms and ratios for tomato growth using the 'Jingfan 502' tomato variety. Thirteen treatments were applied with varying proportions of nitrate nitrogen (NN), ammonium nitrogen (AN), and urea nitrogen (UN). Results revealed that the combination of AN and UN inhibited tomato growth and photosynthetic capacity. Conversely, the joint application of NN and UN or NN and AN led to a significant enhancement in tomato plant growth. Notably, the T12 (75%UN:25%NN) and T4 (75%NN:25%AN) treatments significantly increased the gas exchange and chlorophyll fluorescence parameters, thereby promoting the accumulation of photosynthetic products. The contents of fructose, glucose, and sucrose were significantly increased by 121.07%, 206.26%, and 94.64% and by 104.39%, 156.42%, and 61.40%, respectively, compared with those in the control. Additionally, AN favored starch accumulation, while NN and UN favored fructose, sucrose, and glucose accumulation. Gene expression related to nitrogen and sugar metabolism increased significantly in T12 and T4, with T12 showing greater upregulation. Key enzyme activity in metabolism also increased notably. In summary, T12 enhanced tomato growth by upregulating gene expression, increasing enzyme activity, and boosting photosynthesis and sugar accumulation. Growers should consider using NN and UN to reduce AN application in tomato fertilization.

17.
Nat Prod Bioprospect ; 13(1): 53, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010490

RESUMO

Sarcandra glabra (Thunb.) Nakai is a perennial evergreen herb categorised within the Sarcandra Gardner genus under the Chloranthaceae family. Indigenous to tropical and subtropical regions of East Asia and India, this species is extensively distributed across China, particularly in the southern regions (Sichuan, Yunnan, and Jiangxi). In addition to its high ornamental value, S. glabra has a rich history of use in traditional Chinese medicine, evident through its empirical prescriptions for various ailments like pneumonia, dysentery, fractures, bruises, numbness, amenorrhea, rheumatism, and other diseases. Besides, modern pharmacological studies have revealed various biological activities, such as antitumour, anti-bacterial, anti-viral anti-inflammatory and immunomodulatory effects. The diverse chemical constituents of S. glabra have fascinated natural product researchers since the 1900s. To date, over 400 compounds including terpenoids, coumarins, lignans, flavonoids, sterols, anthraquinones, organic acids, and organic esters have been isolated and characterised, some featuring unprecedented structures. This review comprehensively examines the current understanding of S. glabra's phytochemistry and pharmacology, with emphasis on the chemistry and biosynthesis of its unique chemotaxonomic marker, the lindenane-type sesquiterpenoids.

18.
Integr Cancer Ther ; 22: 15347354231210867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965730

RESUMO

Liver cancer is a common malignant tumor, and its incidence is increasing yearly. Millions of people suffer from liver cancer annually, which has a serious impact on global public health security. Licochalcone A (Lico A), an important component of the traditional Chinese herb licorice, is a natural small molecule drug with multiple pharmacological activities. In this study, we evaluated the inhibitory effects of Lico A on hepatocellular carcinoma cell lines (HepG2 and Huh-7), and explored the inhibitory mechanism of Lico A on hepatocellular carcinoma. First, we evaluated the inhibitory effects of Lico A on hepatocellular carcinoma, and showed that Lico A significantly inhibited and killed HepG2 and Huh-7 cells in vivo and in vitro. Transcriptomic analysis showed that Lico A inhibited the expression of solute carrier family 7 member 11 (SLC7A11), which induced ferroptosis. We confirmed through in vivo and in vitro experiments that Lico A promoted ferroptosis in hepatocellular carcinoma cells by downregulating SLC7A11 expression, thereby inhibiting the glutathione (GSH)-glutathione peroxidase 4 (GPX4) pathway and inducing activation of reactive oxygen species (ROS). In this study, we suggest that Lico A is a potential SLC7A11 inhibitor that induces ferroptotic death in hepatocellular carcinoma cells, thereby providing a theoretical basis for the development of natural small molecule drugs against hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos
19.
Cancer Res Commun ; 3(11): 2375-2385, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37850841

RESUMO

The microbiome affects cancer, from carcinogenesis to response to treatments. New evidence suggests that microbes are also present in many tumors, though the scope of how they affect tumor biology and clinical outcomes is in its early stages. A broad survey of tumor microbiome samples across several independent datasets is needed to identify robust correlations for follow-up testing. We created a tool called {exotic} for "exogenous sequences in tumors and immune cells" to carefully identify the tumor microbiome within RNA sequencing (RNA-seq) datasets. We applied it to samples collected through the Oncology Research Information Exchange Network (ORIEN) and The Cancer Genome Atlas. We showed how the processing removes contaminants and batch effects to yield microbe abundances consistent with non-high-throughput sequencing-based approaches and DNA-amplicon-based measurements of a subset of the same tumors. We sought to establish clinical relevance by correlating the microbe abundances with various clinical and tumor measurements, such as age and tumor hypoxia. This process leveraged the two datasets and raised up only the concordant (significant and in the same direction) associations. We observed associations with survival and clinical variables that are cancer specific and relatively few associations with immune composition. Finally, we explored potential mechanisms by which microbes and tumors may interact using a network-based approach. Alistipes, a common gut commensal, showed the highest network degree centrality and was associated with genes related to metabolism and inflammation. The {exotic} tool can support the discovery of microbes in tumors in a way that leverages the many existing and growing RNA-seq datasets. SIGNIFICANCE: The intrinsic tumor microbiome holds great potential for its ability to predict various aspects of cancer biology and as a target for rational manipulation. Here, we describe a tool to quantify microbes from within tumor RNA-seq and apply it to two independent datasets. We show new associations with clinical variables that justify biomarker uses and more experimentation into the mechanisms by which tumor microbiomes affect cancer outcomes.


Assuntos
Microbiota , Neoplasias , Humanos , RNA-Seq , Neoplasias/genética , Microbiota/genética , Análise de Sequência de RNA , RNA Neoplásico
20.
Food Chem X ; 19: 100756, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780342

RESUMO

Water deficit (WD) irrigation techniques to improve water use efficiency have been rapidly developed. However, the effect of WD irrigation on tomato quality has not been sufficiently studied. Here, we investigated the effects of varying water irrigation levels [T1-T4: 80%, 65%, 55%, and 45% of maximum field moisture capacity (FMC)] and full irrigation (CK: 90% of maximum FMC) on tomato fruits from the mature-green to red-ripening stages, to compare the nutritional and flavour qualities of the resulting tomatoes. The proline, aspartic, malic, citric, and ascorbic acid contents increased, phenylalanine and glutamic acid contents decreased, and the total amino and organic acid contents increased by 18.91% and 26.12%, respectively, in T2-treated fruits. Furthermore, the T2-treated fruits exhibited higher K and P contents alongside improved characteristic aromas. These findings provide novel insights for further improvements in tomato quality while also developing water-saving irrigation techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA