Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412391

RESUMO

Mitotic anaphase onset is a key cellular process tightly regulated by multiple kinases. The involvement of mitogen-activated protein kinases (MAPKs) in this process has been established in Xenopus egg extracts. However, the detailed regulatory cascade remains elusive, and it is also unknown whether the MAPK-dependent mitotic regulation is evolutionarily conserved in the single-cell eukaryotic organisms such as fission yeast (Schizosaccharomyces pombe). Here, we show that two MAPKs in S. pombe indeed act in concert to restrain anaphase-promoting complex/cyclosome (APC/C) activity upon activation of the spindle assembly checkpoint (SAC). One MAPK, Pmk1, binds to and phosphorylates Slp1Cdc20, the co-activator of APC/C. Phosphorylation of Slp1Cdc20 by Pmk1, but not by Cdk1, promotes its subsequent ubiquitylation and degradation. Intriguingly, Pmk1-mediated phosphorylation event is also required to sustain SAC under environmental stress. Thus, our study establishes a new underlying molecular mechanism of negative regulation of APC/C by MAPK upon stress stimuli, and provides a previously unappreciated framework for regulation of anaphase entry in eukaryotic cells.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Proteínas Cdc20 , Proteínas Quinases Ativadas por Mitógeno , Schizosaccharomyces , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Fosforilação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Estresse Fisiológico , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
2.
Elife ; 132024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289024

RESUMO

Eukaryotic cells are constantly exposed to various environmental stimuli. It remains largely unexplored how environmental cues bring about epigenetic fluctuations and affect heterochromatin stability. In the fission yeast Schizosaccharomyces pombe, heterochromatic silencing is quite stable at pericentromeres but unstable at the mating-type (mat) locus under chronic heat stress, although both loci are within the major constitutive heterochromatin regions. Here, we found that the compromised gene silencing at the mat locus at elevated temperature is linked to the phosphorylation status of Atf1, a member of the ATF/CREB superfamily. Constitutive activation of mitogen-activated protein kinase (MAPK) signaling disrupts epigenetic maintenance of heterochromatin at the mat locus even under normal temperature. Mechanistically, phosphorylation of Atf1 impairs its interaction with heterochromatin protein Swi6HP1, resulting in lower site-specific Swi6HP1 enrichment. Expression of non-phosphorylatable Atf1, tethering Swi6HP1 to the mat3M-flanking site or absence of the anti-silencing factor Epe1 can largely or partially rescue heat stress-induced defective heterochromatic maintenance at the mat locus.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica
3.
Nat Commun ; 13(1): 5565, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138017

RESUMO

Microtubules play a crucial role during the establishment and maintenance of cell polarity. In fission yeast cells, the microtubule plus-end tracking proteins (+TIPs) (including the CLIP-170 homologue Tip1) regulate microtubule dynamics and also transport polarity factors to the cell cortex. Here, we show that the E3 ubiquitin ligase Dma1 plays an unexpected role in controlling polarized growth through ubiquitinating Tip1. Dma1 colocalizes with Tip1 to cortical sites at cell ends, and is required for ubiquitination of Tip1. Although the absence of dma1+ does not cause apparent polar growth defects in vegetatively growing cells, Dma1-mediated Tip1 ubiquitination is required to restrain polar growth upon DNA replication stress. This mechanism is distinct from the previously recognized calcineurin-dependent inhibition of polarized growth. In this work, we establish a link between Dma1-mediated Tip1 ubiquitination and DNA replication or DNA damage checkpoint-dependent inhibition of polarized growth in fission yeast.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
PLoS Genet ; 18(9): e1010397, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36108046

RESUMO

The activated spindle assembly checkpoint (SAC) potently inhibits the anaphase-promoting complex/cyclosome (APC/C) to ensure accurate chromosome segregation at anaphase. Early studies have recognized that the SAC should be silenced within minutes to enable rapid APC/C activation and synchronous segregation of chromosomes once all kinetochores are properly attached, but the underlying silencers are still being elucidated. Here, we report that the timely silencing of SAC in fission yeast requires dnt1+, which causes severe thiabendazole (TBZ) sensitivity and increased rate of lagging chromosomes when deleted. The absence of Dnt1 results in prolonged inhibitory binding of mitotic checkpoint complex (MCC) to APC/C and attenuated protein levels of Slp1Cdc20, consequently slows the degradation of cyclin B and securin, and eventually delays anaphase entry in cells released from SAC activation. Interestingly, Dnt1 physically associates with APC/C upon SAC activation. We propose that this association may fend off excessive and prolonged MCC binding to APC/C and help to maintain Slp1Cdc20 stability. This may allow a subset of APC/C to retain activity, which ensures rapid anaphase onset and mitotic exit once SAC is inactivated. Therefore, our study uncovered a new player in dictating the timing and efficacy of APC/C activation, which is actively required for maintaining cell viability upon recovery from the inhibition of APC/C by spindle checkpoint.


Assuntos
Proteínas de Ciclo Celular , Tiabendazol , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Securina/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Tiabendazol/metabolismo
5.
FASEB J ; 36(9): e22524, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36006032

RESUMO

As a surveillance mechanism, the activated spindle assembly checkpoint (SAC) potently inhibits the E3 ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) to ensure accurate chromosome segregation. Although the protein phosphatase 2A (PP2A) has been proposed to be both, directly and indirectly, involved in spindle assembly checkpoint inactivation in mammalian cells, whether it is similarly operating in the fission yeast Schizosaccharomycer pombe has never been demonstrated. Here, we investigated whether fission yeast PP2A is involved in SAC silencing by following the rate of cyclin B (Cdc13) destruction at SPBs during the recovery phase in nda3-KM311 cells released from the inhibition of APC/C by the activated spindle checkpoint. The timing of the SAC inactivation is only slightly delayed when two B56 regulatory subunits (Par1 and Par2) of fission yeast PP2A are absent. Overproduction of individual PP2A subunits either globally in the nda3-KM311 arrest-and-release system or locally in the synthetic spindle checkpoint activation system only slightly suppresses the SAC silencing defects in PP1 deletion (dis2Δ) cells. Our study thus demonstrates that the fission yeast PP2A is not a key regulator actively involved in SAC inactivation.


Assuntos
Schizosaccharomyces , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Mamíferos/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fuso Acromático/fisiologia
6.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849791

RESUMO

Using genetic mutations to study protein functions in vivo is a central paradigm of modern biology. Single-domain camelid antibodies generated against GFP have been engineered as nanobodies or GFP-binding proteins (GBPs) that can bind GFP as well as some GFP variants with high affinity and selectivity. In this study, we have used GBP-mCherry fusion protein as a tool to perturb the natural functions of a few kinetochore proteins in the fission yeast Schizosaccharomyces pombe. We found that cells simultaneously expressing GBP-mCherry and the GFP-tagged inner kinetochore protein Cnp1 are sensitive to high temperature and microtubule drug thiabendazole (TBZ). In addition, kinetochore-targeted GBP-mCherry by a few major kinetochore proteins with GFP tags causes defects in faithful chromosome segregation. Thus, this setting compromises the functions of kinetochores and renders cells to behave like conditional mutants. Our study highlights the potential of using GBP as a general tool to perturb the function of some GFP-tagged proteins in vivo with the objective of understanding their functional relevance to certain physiological processes, not only in yeasts, but also potentially in other model systems.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Transporte , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
J Cell Sci ; 133(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32878942

RESUMO

Cellular polarization underlies many facets of cell behavior, including cell growth. The rod-shaped fission yeast Schizosaccharomyces pombe is a well-established, genetically tractable system for studying growth polarity regulation. S. pombe cells elongate at their two cell tips in a cell cycle-controlled manner, transitioning from monopolar to bipolar growth in interphase when new ends established by the most recent cell division begin to extend. We previously identified cytokinesis as a critical regulator of new end growth and demonstrated that Fic1, a cytokinetic factor, is required for normal polarized growth at new ends. Here, we report that Fic1 is phosphorylated on two C-terminal residues, which are each targeted by multiple protein kinases. Endogenously expressed Fic1 phosphomutants cannot support proper bipolar growth, and the resultant defects facilitate the switch into an invasive pseudohyphal state. Thus, phosphoregulation of Fic1 links the completion of cytokinesis to the re-establishment of polarized growth in the next cell cycle. These findings broaden the scope of signaling events that contribute to regulating S. pombe growth polarity, underscoring that cytokinetic factors constitute relevant targets of kinases affecting new end growth.This article has an associated First Person interview with Anthony M. Rossi, joint first author of the paper.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Divisão Celular , Polaridade Celular/genética , Citocinese/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
J Cell Sci ; 133(13)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499408

RESUMO

In the fission yeast Schizosaccharomyces pombe, both RNAi machinery and RNAi-independent factors mediate transcriptional and posttranscriptional silencing and heterochromatin formation. Here, we show that the silencing of reporter genes at major native heterochromatic loci (centromeres, telomeres, mating-type locus and rDNA regions) and an artificially induced heterochromatin locus is alleviated in a fission yeast hsp90 mutant, hsp90-G84C Also, H3K9me2 enrichment at heterochromatin regions, especially at the mating-type locus and subtelomeres, is compromised, suggesting heterochromatin assembly defects. We further discovered that Hsp90 is required for stabilization or assembly of the RNA-induced transcriptional silencing (RITS) and Argonaute siRNA chaperone (ARC) RNAi effector complexes, the RNAi-independent factor Fft3, the shelterin complex subunit Poz1 and the Snf2/HDAC-containing repressor complex (SHREC). Our ChIP data suggest that Hsp90 regulates the efficient recruitment of the methyltransferase/ubiquitin ligase complex CLRC by shelterin to chromosome ends and targeting of the SHREC and Fft3 to mating type locus and/or rDNA region. Finally, our genetic analyses demonstrated that increased heterochromatin spreading restores silencing at subtelomeres in the hsp90-G84C mutant. Thus, this work uncovers a conserved factor critical for promoting RNAi-dependent and -independent heterochromatin assembly and gene silencing through stabilizing multiple effectors and effector complexes.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Montagem e Desmontagem da Cromatina , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Heterocromatina/genética , Interferência de RNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
FEBS J ; 285(13): 2468-2480, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29722930

RESUMO

Septins generally function as scaffolds and as cortical barriers to restrict the diffusion of membrane proteins. In the fission yeast Schizosaccharomyces pombe, septins form a ring structure at the septum after spindle breakdown during the constriction of the contractile actomyosin ring (CAR) and serve as a scaffold to recruit glucanases to mediate ultimate daughter cell separation. Despite this, it remains unclear if septins play any significant roles before the cell separation during cytokinesis. Employing live cell microscopy, we carefully examined SIN (Septation Initiation Network) signaling and glucan synthases, two key factors ensuring proper function of the CAR. In the absence of the core septin component Spn1p, the formation of a compact CAR is advanced and the CAR constriction rate is slightly but significantly decreased. Moreover, the SIN kinase Sid2p and the glucan synthases Bgs1p and Ags1p form an equatorial ring quite prematurely, but their maintenance at the equatorial region is diminished spn1Δ cells. These findings suggest that septins act as key players in an accurate establishment and the maintenance of CAR by orchestrating the equatorial dynamics of Sid2p and glucan synthases. Hence, this work demonstrates that, in addition to their function during ultimate cell septation, septins have important roles in regulating earlier cytokinetic events, including CAR assembly and constriction, SIN signaling, and the cortical dynamics of the glucan synthases.


Assuntos
Citocinese/genética , Glucosiltransferases/genética , Proteínas Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Septinas/genética , Actomiosina/metabolismo , Divisão Celular/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Glucosiltransferases/metabolismo , Mutação , Proteínas Quinases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Septinas/metabolismo
10.
J Cell Sci ; 131(3)2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29361524

RESUMO

The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are ß-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1-Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteólise , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Estabilidade Proteica
11.
J Cell Sci ; 130(5): 1003-1015, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082423

RESUMO

GFP-binding protein (or GBP) has been recently developed in various systems and organisms as an efficient tool to purify GFP-fusion proteins. Due to the high affinity between GBP and GFP or GFP variants, this GBP-based approach is also ideally suited to alter the localization of functional proteins in live cells. In order to facilitate the wide use of the GBP-targeting approach in the fission yeast Schizosaccharomyces pombe, we developed a set of pFA6a-, pJK148- and pUC119-based vectors containing GBP- or GBP-mCherry-coding sequences and variants of inducible nmt1 or constitutive adh1 promoters that result in different levels of expression. The GBP or GBP-mCherry fragments can serve as cassettes for N- or C-terminal genomic tagging of genes of interest. We illustrated the application of these vectors in the construction of yeast strains with Dma1 or Cdc7 tagged with GBP-mCherry and efficient targeting of Dma1- or Cdc7-GBP-mCherry to the spindle pole body by Sid4-GFP. This series of vectors should help to facilitate the application of the GBP-targeting approach in manipulating protein localization and the analysis of gene function in fission yeast, at the level of single genes, as well as at a systematic scale.


Assuntos
Técnicas Citológicas/métodos , Proteínas de Fluorescência Verde/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Bases , Genes Reporter , Vetores Genéticos/metabolismo , Luciferases/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Corpos Polares do Fuso/metabolismo
12.
J Cell Sci ; 126(Pt 21): 4995-5004, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006256

RESUMO

Cytokinesis involves temporally and spatially coordinated action of the cell cycle, cytoskeletal and membrane systems to achieve separation of daughter cells. The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Previously, we have shown that in fission yeast, the nucleolar protein Dnt1 negatively regulates the SIN pathway in a manner that is independent of the Cdc14-family phosphatase Clp1/Flp1, but how Dnt1 modulates this pathway has remained elusive. By contrast, it is clear that its budding yeast relative, Net1/Cfi1, regulates the homologous MEN signaling pathway by sequestering Cdc14 phosphatase in the nucleolus before mitotic exit. In this study, we show that dnt1(+) positively regulates G2/M transition during the cell cycle. By conducting epistasis analyses to measure cell length at septation in double mutant (for dnt1 and genes involved in G2/M control) cells, we found a link between dnt1(+) and wee1(+). Furthermore, we showed that elevated protein levels of the mitotic inhibitor Wee1 kinase and the corresponding attenuation in Cdk1 activity is responsible for the rescuing effect of dnt1Δ on SIN mutants. Finally, our data also suggest that Dnt1 modulates Wee1 activity in parallel with SCF-mediated Wee1 degradation. Therefore, this study reveals an unexpected missing link between the nucleolar protein Dnt1 and the SIN signaling pathway, which is mediated by the Cdk1 regulator Wee1 kinase. Our findings also define a novel mode of regulation of Wee1 and Cdk1, which is important for integration of the signals controlling the SIN pathway in fission yeast.


Assuntos
Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Regulação para Baixo , Fase G2 , Meiose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/genética , Regulação Fúngica da Expressão Gênica , Proteínas Tirosina Quinases/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
13.
Cell Cycle ; 12(6): 884-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23462181

RESUMO

Although the sterile 20 (Ste20) serine/threonine protein kinase was originally identified as a component of the S. cerevisiae mating pathway, it has homologs in higher eukaryotes and is part of a larger family of Ste20-like kinases. Ste20-like kinases are involved in multiple cellular processes, such as cell growth, morphogenesis, apoptosis and immune response. Carrying out such a diverse array of biological functions requires numerous regulatory inputs and outputs in the form of protein-protein interactions and post-translational modifications. Hence, a thorough knowledge of Ste20-like kinase binding partners and phosphorylation sites will be essential for understanding the various roles of these kinases. Our recent study revealed that Schizosaccharomyces pombe Nak1 (a conserved member of the GC-kinase sub-family of Ste20-like kinases) is in a complex with the leucine-rich repeat-containing protein Sog2. Here, we show a novel and unexpected interaction between the Nak1-Sog2 kinase complex and Casein kinase 2 (Cka1, Ckb1 and Ckb2) using tandem-affinity purification followed by mass spectrometric analysis. In addition, we identify unique phosphosites on Nak1, Sog2 and the catalytic subunit of casein kinase 2, Cka1. Given the conserved nature of these kinases, we expect this work will shed light on the functions of these proteins both in yeast and higher eukaryotes.


Assuntos
Proteínas de Transporte/metabolismo , Caseína Quinase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
14.
Mol Biol Cell ; 23(17): 3348-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22809626

RESUMO

The Schizosaccharomyces pombe checkpoint protein Dma1 couples mitotic progression with cytokinesis and is important in delaying mitotic exit and cytokinesis when kinetochores are not properly attached to the mitotic spindle. Dma1 is a ubiquitin ligase and potential functional relative of the human tumor suppressor Chfr. Dma1 delays mitotic exit and cytokinesis by ubiquitinating a scaffold protein (Sid4) of the septation initiation network, which, in turn, antagonizes the ability of the Polo-like kinase Plo1 to promote cell division. Here we identify Dnt1 as a Dma1-binding protein. Several lines of evidence indicate that Dnt1 inhibits Dma1 function during metaphase. First, Dnt1 interacts preferentially with Dma1 during metaphase. Second, Dma1 ubiquitin ligase activity and Sid4 ubiquitination are elevated in dnt1 cells. Third, the enhanced mitotic defects in dnt1Δ plo1 double mutants are partially rescued by deletion of dma1(+), suggesting that the defects in dnt1 plo1 double mutants are attributable to excess Dma1 activity. Taken together, these data show that Dnt1 acts to restrain Dma1 activity in early mitosis to allow normal mitotic progression.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Divisão Celular , Citocinese , Mitose , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Fuso Acromático/metabolismo , Ubiquitinação
15.
Mol Biol Cell ; 21(24): 4349-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20980623

RESUMO

In fission yeast Schizosaccharomyces pombe, a diploid mother cell differentiates into an ascus containing four haploid ascospores following meiotic nuclear divisions, through a process called sporulation. Several meiosis-specific proteins of fission yeast have been identified to play essential roles in meiotic progression and sporulation. We report here an unexpected function of mitotic spindle checkpoint protein Dma1 in proper spore formation. Consistent with its function in sporulation, expression of dma1(+) is up-regulated during meiosis I and II. We showed that Dma1 localizes to the SPB during meiosis and the maintenance of this localization at meiosis II depends on septation initiation network (SIN) scaffold proteins Sid4 and Cdc11. Cells lacking Dma1 display defects associated with sporulation but not nuclear division, leading frequently to formation of asci with fewer spores. Our genetic analyses support the notion that Dma1 functions in parallel with the meiosis-specific Sid2-related protein kinase Slk1/Mug27 and the SIN signaling during sporulation, possibly through regulating proper forespore membrane assembly. Our studies therefore revealed a novel function of Dma1 in regulating sporulation in fission yeast.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Schizosaccharomyces/fisiologia , Proteínas de Ciclo Celular/metabolismo , Meiose , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Regulação para Cima
16.
Mol Biol Cell ; 18(8): 2924-34, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17538026

RESUMO

The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe, and Saccharomyces cerevisiae, respectively. One function of these pathways is to keep the Cdc14-family phosphatase, called Clp1 in S. pombe, from being sequestered and inhibited in the nucleolus. In S. pombe, the SIN and Clp1 act as part of a cytokinesis checkpoint that allows cells to cope with cytokinesis defects. The SIN promotes checkpoint function by 1) keeping Clp1 out of the nucleolus, 2) maintaining the cytokinetic apparatus, and 3) halting the cell cycle until cytokinesis is completed. In a screen for suppressors of the SIN mutant cytokinesis checkpoint defect, we identified a novel nucleolar protein called Dnt1 and other nucleolar proteins, including Rrn5 and Nuc1, which are known to be required for rDNA transcription. Dnt1 shows sequence homology to Net1/Cfi1, which encodes the nucleolar inhibitor of Cdc14 in budding yeast. Like Net1/Cfi1, Dnt1 is required for rDNA silencing and minichromosome maintenance, and both Dnt1 and Net1/Cfi1 negatively regulate the homologous SIN and MEN pathways. Unlike Net1/Cfi1, which regulates the MEN through the Cdc14 phosphatase, Dnt1 can inhibit SIN signaling independently of Clp1, suggesting a novel connection between the nucleolus and the SIN pathway.


Assuntos
Nucléolo Celular/metabolismo , Citocinese , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Ribossômico/metabolismo , Genes Supressores , Mutação/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica
17.
Genetics ; 172(4): 2101-12, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16415366

RESUMO

In the fission yeast Schizosaccharomyces pombe the septation initiation network (SIN) is required for stabilization of the actomyosin ring in late mitosis as well as for ring constriction and septum deposition. In a genetic screen for suppressors of the SIN mutant sid2-250, we isolated a mutation, ace2-35, in the transcription factor Ace2p. Both ace2Delta and ace2-35 show defects in cell separation, and both can rescue the growth defects of some SIN mutants at low restrictive temperatures, where the SIN single mutants lyse at the time of cytokinesis. By detailed analysis of the formation and constriction of the actomyosin ring and septum in the sid2-250 mutant at low restrictive temperatures, we show that the lysis phenotype of the sid2-250 mutant is likely due to a weak cell wall and septum combined with enzymatic activity of septum-degrading enzymes. Consistent with the recent findings that Ace2p controls transcription of genes involved in cell separation, we show that disruption of some of these genes can also rescue sid2-250 mutants. Consistent with SIN mutants having defects in septum formation, many SIN mutants can be rescued at the low restrictive temperature by the osmotic stabilizer sorbitol. The small GTPase Rho1 is known to promote cell wall formation, and we find that Rho1p expressed from a multi-copy plasmid can also rescue sid2-250 at the low restrictive temperature. Together these results suggest that the SIN has a role in promoting proper cell wall formation at the division septa.


Assuntos
Actomiosina/genética , Mitose , Mutação , Schizosaccharomyces/genética , Sequência de Aminoácidos , Cruzamentos Genéticos , Citocinese , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Temperatura , Proteínas rho de Ligação ao GTP/metabolismo
18.
Eukaryot Cell ; 2(3): 510-20, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12796296

RESUMO

Cytokinesis in the fission yeast Schizosaccharomyces pombe is regulated by a signaling pathway termed the septation initiation network (SIN). The SIN is essential for initiation of actomyosin ring constriction and septum formation. In a screen to search for mutations that can rescue the sid2-250 SIN mutant, we obtained scw1-18. Both the scw1-18 mutant and the scw1 deletion mutant (scw1Delta mutant), have defects in cell separation. Both the scw1-18 and scw1Delta mutations rescue the growth defects of not just the sid2-250 mutant but also the other temperature-sensitive SIN mutants. Other cytokinesis mutants, such as those defective for actomyosin ring formation, are not rescued by scw1Delta. scw1Delta does not seem to rescue the SIN by restoring SIN signaling defects. However, scw1Delta may function downstream of the SIN to promote septum formation, since scw1Delta can rescue the septum formation defects of the cps1-191beta-1,3-glucan synthase mutant, which is required for synthesis of the primary septum.


Assuntos
Divisão Celular/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Deleção de Genes , Dados de Sequência Molecular , Mutagênese , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/isolamento & purificação , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos , Temperatura
19.
Mol Cell Biol ; 22(20): 7168-83, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12242294

RESUMO

Precise segregation of chromosomes requires the activity of a specialized chromatin region, the centromere, that assembles the kinetochore complex to mediate the association with spindle microtubules. We show here that Mal2p, previously identified as a protein required for genome stability, is an essential component of the fission yeast centromere. Loss of functional Mal2p leads to extreme missegregation of chromosomes due to nondisjunction of sister chromatids and results in inviable cells. Mal2p associates specifically with the central region of the complex fission yeast centromere, where it is required for the specialized chromatin architecture as well as for transcriptional silencing of this region. Genetic evidence indicates that mal2(+) interacts with mis12(+), encoding another component of the inner centromere core complex. In addition, Mal2p is required for correct metaphase spindle length. Our data imply that the Mal2p protein is required to build up a functional fission yeast centromere.


Assuntos
Proteínas de Transporte , Centrômero/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe , Complexos Ubiquitina-Proteína Ligase , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/fisiologia , Cromátides , Cromatina , Segregação de Cromossomos , Cromossomos Fúngicos/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Ligases , Proteínas Mad2 , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Não Disjunção Genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA