Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 32849-32864, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859078

RESUMO

Hong-Ou-Mandel (HOM) interference of multi-mode frequency entangled states plays a crucial role in quantum metrology. However, as the number of modes increases, the HOM interference pattern becomes increasingly complex, making it challenging to comprehend intuitively. To overcome this problem, we present the theory and simulation of multi-mode-HOM interference (MM-HOMI) and compare it to multi-slit interference (MSI). We find that these two interferences have a strong mapping relationship and are determined by two factors: the envelope factor and the details factor. The envelope factor is contributed by the single-mode HOM interference (single-slit diffraction) for MM-HOMI (MSI). The details factor is given by sin (Nx)/sin (x) ([sin (Nv)/sin (v)]2) for MM-HOMI (MSI), where N is the mode (slit) number and x (v) is the phase spacing of two adjacent spectral modes (slits). As a potential application, we demonstrate that the square root of the maximal Fisher information in MM-HOMI increases linearly with the number of modes, indicating that MM-HOMI is a powerful tool for enhancing precision in time estimation. We also discuss multi-mode Mach-Zehnder interference, multi-mode NOON-state interference, and the extended Wiener-Khinchin theorem. This work may provide an intuitive understanding of MM-HOMI patterns and promote the application of MM-HOMI in quantum metrology.

2.
ACS Appl Mater Interfaces ; 15(26): 31849-31866, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345864

RESUMO

Herein, we explore the potential of innovative manufacturing techniques based on green chemistry principles, for the fabrication of convenient, performant, and stable supported photocatalysts to be used for water depollution. After giving some insight into the use of fractal geometry for the fabrication of tunable polymer supports for photocatalysts, we investigated the use of liquid crystal display (LCD) 3D printing to generate the fractal resin substrates to be used for the immobilization of semiconductor photocatalysts. Notably, confocal laser imaging was used as a first attempt for assessing the surface area of the fractal substrate. Immobilization methods based on cold plasma discharge (CPD) were employed to modify the surface of the polymer substrates and permanently anchor three different phases, namely, nickel-based metal-organic framework (Ni-MOF), BiOI, and AgVO3, in a hierarchical configuration. Herein, for the first time, we developed a plasma-initiated condensed in situ complexation-assisted precipitation (c-ISCAP) method that allowed 2D Ni-MOF to be synthesized directly onto the surface of a polymer substrate, in a single step. Not only this MOF coating was found to be strongly bound to the surface of the polymer substrate but also very uniform and fully functional, even when other inorganic phases were immobilized on the top of this layer. This chemical approach opens the way for the fabrication of hybrid materials with complex polymer substrates and MOF coatings that could be used in a range of possible applications, for instance as chemical sensors, electrodes, adsorbents, optical devices, etc. Our hybrid photocatalysts were tested via photodegradation of Rhodamine B (RhB) dye upon visible light activation, with recycling runs to assess their durability. It was found that the hierarchical heterojunction Ni-MOF/BiOI/AgVO3 showed an outstanding ability for the removal of RhB dye, owing to the activity of the Ni-MOF layer in terms of charge transfer, and also partly because of its adsorbing potential. The three photoactive phases demonstrated a strong synergistic effect through coupling. However, more importantly, our findings show that their immobilization itself, regardless of the method used, significantly modified their optoelectronic properties, hence most likely changing the overall mechanism of charge transfer in the heterojunction. The Ni-MOF phase, notably, was found to display a reduced bandgap when obtained by c-ISCAP, which contributed to enhance its activation by visible light irradiation. Finally, it was established that the fractal geometry had a significant impact on the efficiency of the supported catalysts, probably thanks to an increased immobilization ratio of photocatalyst mostly, owing to the larger surface area available.

3.
Opt Lett ; 48(9): 2361-2364, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126274

RESUMO

Entangled qudits, the high-dimensional entangled states, play an important role in the study of quantum information. How to prepare entangled qudits in an efficient and easy-to-operate manner is still a challenge in quantum technology. Here, we demonstrate a method to engineer frequency entangled qudits in a spontaneous parametric downconversion process. The proposal employs an angle-dependent phase-matching condition in a nonlinear crystal, which forms a classical-quantum mapping between the spatial (pump) and spectral (biphotons) degrees of freedom. In particular, the pump profile is separated into several bins in the spatial domain, and thus shapes the down-converted biphotons into discrete frequency modes in the joint spectral space. Our approach provides a feasible and efficient method to prepare a high-dimensional frequency entangled state. As an experimental demonstration, we generate a three-dimensional entangled state by using a homemade variable slit mask.

4.
Opt Express ; 30(4): 4999-5007, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209471

RESUMO

Ultrafast quantum optics with time-frequency entangled photons is at the forefront of progress towards future quantum technologies. However, to unravel the time domain structure of entangled photons and exploit fully their rich dimensionality, a single-photon detector with sub-picosecond temporal resolution is required. Here, we present ultrafast single-photon detection using an optical Kerr gate composed of a photonic crystal fiber (PCF) placed inside a Sagnac interferometer. A near-rectangle temporal waveform of a heralded single-photon generated via spontaneous parametric down-conversion is measured with temporal resolution as high as 224 ± 9 fs. The large nonlinearity and long effective interaction length of the PCF enables maximum detection efficiency to be achieved with only 30.5 mW gating pulse average power, demonstrating an order-of-magnitude improvement compared to optical gating with sum-frequency generation. Also, we discuss the trade-off relationship between detection efficiency and temporal resolution.

5.
Opt Express ; 29(22): 36840-36856, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809085

RESUMO

We investigate in detail the azimuthal and radial modulation (i.e., the azimuthal order lj and radial order pj with j = 1, 2) of double-four-wave mixing (double-FWM) by use of two higher-order Laguerre-Gaussian (LG) beams in a Landau quantized graphene ensemble. A pair of weak probe pulses in the graphene ensemble interacts with two LG beams and thus two vortex FWM fields with the opposite vorticity are subsequently generated. In combination with numerical simulations, we reveal that (i) there appear l1 + l2 periods of phase jumps in the phase profiles under any conditions; (ii) p + 1 concentric rings emerge in the intensity profile and the strength is mainly concentrated on the inner ring when the two LG beams have the same radial orders (i.e., p1 = p2 = p); (iii) there are p raised narrow rings occurring in the phase profile in the case of p1 = p2 = p and l1 ≠ l2, and the raised narrow rings would disappear when p1 = p2 and l1 = l2; (iv) pmax + 1 concentric rings appear in the intensity profile, meanwhile, |p1 - p2| convex discs and pmin raised narrow rings emerge in the phase diagram in the case of p1 ≠ p2, here pmax = max(p1, p2) and pmin = min(p1, p2). Moreover, the two generated FWM fields have the same results, and the difference is that the phase jumps are completely opposite. These findings may have potential application in graphene-based nonlinear optical device by using LG beams with adjustable mode orders.

6.
Opt Express ; 29(1): 256-271, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33362119

RESUMO

We theoretically investigate the preparation of mid-infrared (MIR) spectrally-uncorrelated biphotons from a spontaneous parametric down-conversion process using doped LN crystals, including MgO doped LN, ZnO doped LN, and In2O3 doped ZnLN with doping ratio from 0 to 7 mol%. The tilt angle of the phase-matching function and the corresponding poling period are calculated under type-II, type-I, and type-0 phase-matching conditions. We also calculate the thermal properties of the doped LN crystals and their performance in Hong-Ou-Mandel interference. It is found that the doping ratio has a substantial impact on the group-velocity-matching (GVM) wavelengths. Especially, the GVM2 wavelength of co-doped InZnLN crystal has a tunable range of 678.7 nm, which is much broader than the tunable range of less than 100 nm achieved by the conventional method of adjusting the temperature. It can be concluded that the doping ratio can be utilized as a degree of freedom to manipulate the biphoton state. The spectrally uncorrelated biphotons can be used to prepare pure single-photon source and entangled photon source, which may have promising applications for quantum-enhanced sensing, imaging, and communications at the MIR range.

7.
Phys Rev Lett ; 122(9): 090404, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932520

RESUMO

We derive a state-dependent error-disturbance trade-off based on a statistical distance in the sequential measurements of a pair of noncommutative observables and experimentally verify the relation with a photonic qubit system. We anticipate that this Letter may further stimulate the study on the quantum uncertainty principle and related applications in quantum measurements.

8.
Opt Express ; 26(16): 21153-21158, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119419

RESUMO

Arbitrary shaping of optical waveform is fundamental interest from basic science to advanced optical technologies. However, it is still challenging task for shaping a biphoton wave packet. Here we experimentally manipulate the spectrum and phase of a biphoton wave packet in a two-dimensional frequency space. The spectrum is shaped by adjusting the temperature of the crystal, and the phase is controlled by tilting the dispersive glass plate. The manipulating effects are confirmed by measuring the two-photon spectral intensity (TSI) and the Hong-Ou-Mandel (HOM) interference patterns. The technique in this work paves the way for arbitrary shaping of a multi-photon wave packet in a quantum manner.

9.
Sci Rep ; 6: 36914, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841300

RESUMO

The NOON state, and its experimental approximation the Holland-Burnett state, have important applications in phase sensing measurement with enhanced sensitivity. However, most of the previous Holland-Burnett state interference (HBSI) experiments only investigated the area of the interference pattern in the region immediately around zero optical path length difference, while the full HBSI pattern over a wide range of optical path length differences has not yet been well explored. In this work, we experimentally and theoretically demonstrate up to six-photon HBSI and study the properties of the interference patterns over a wide range of optical path length differences. It was found that the shape, the coherence time and the visibility of the interference patterns were strongly dependent on the detection schemes. This work paves the way for applications which are based on the envelope of the HBSI pattern, such as quantum spectroscopy and quantum metrology.

10.
Opt Express ; 23(22): 28836-48, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561152

RESUMO

Hong-Ou-Mandel (HOM) interference between independent photon sources (HOMI-IPS) is the fundamental block for quantum information processing. All the previous HOMI-IPS experiments were carried out in time-domain, however, the spectral information during the interference was omitted. Here, we investigate the HOMI-IPS in spectral domain using the recently developed fast fiber spectrometer, and demonstrate the spectral distribution during the HOM interference between two heralded single-photon sources, and two thermal sources. This experiment not only can deepen our understanding of HOMI-IPS from the viewpoint of spectral domain, but also presents a tool to test the theoretical predictions of HOMI-IPS using spectrally engineered sources.

11.
Sci Rep ; 5: 9333, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25791212

RESUMO

Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

12.
Sci Rep ; 4: 7468, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524646

RESUMO

Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.

13.
Opt Express ; 22(10): 11498-507, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921271

RESUMO

We demonstrate pulsed polarization-entangled photons generated from a periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied, the intrinsic spectral purity of the photons is much higher than in the previous scheme at around 800 nm wavelength. The combination of a Sagnac interferometer and the GVM-PPKTP crystal makes our entangled source compact, stable, highly entangled, spectrally pure and ultra-bright. The photons were detected by two superconducting nanowire single photon detectors (SNSPDs) with detection efficiencies of 70% and 68% at dark counts of less than 1 kcps. We achieved fidelities of 0.981 ± 0.0002 for |ψ(-)〉 and 0.980 ± 0.001 for |ψ(+)〉 respectively. This GVM-PPKTP-Sagnac scheme is directly applicable to quantum communication experiments at telecom wavelength, especially in free space.

14.
Opt Express ; 21(9): 10659-66, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23669922

RESUMO

We theoretically and experimentally investigate the spectral tunability and purity of photon pairs generated from spontaneous parametric down conversion in periodically poled KTiOPO(4) crystal with group-velocity matching condition. The numerical simulation predicts that the spectral purity can be kept higher than 0.81 when the wavelength is tuned from 1460 nm to 1675 nm, which covers the S-, C-, L-, and U-band in telecommunication wavelengths. We also experimentally measured the joint spectral intensity at 1565 nm, 1584 nm and 1565 nm, yielding Schmidt numbers of 1.01, 1.02 and 1.04, respectively. Such a photon source is useful for quantum information and communication systems.


Assuntos
Iluminação/instrumentação , Fótons , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA