Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(5): e2305004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37649170

RESUMO

Herein, the design of conjugated acetylenic polymers (CAPs) featuring diverse spatial arrangements and intramolecular spacers of diacetylene moieties (─C≡C─C≡C─) for photocatalytic hydrogen peroxide (H2 O2 ) production from water and O2 , without the need for sacrificial agents, is presented. It is shown that the linear configuration of diacetylene moieties within conjugated acetylenic polymers (CAPs) induces a pronounced polarization of electron distribution, which imparts enhanced charge-carrier mobility when compared to CAPs' networks featuring cross-linked arrangements. Moreover, optimizing the intramolecular spacer between diacetylene moieties within the linear structure leads to the exceptional modulation of the band structures, specifically resulting in a downshifted valence band (VB) and rendering the two-electron water oxidation pathway thermodynamically feasible for H2 O2 production. Consequently, the optimized CAPs with a linear configuration (LCAP-2), featuring spatially separated reduction centers (benzene rings) and oxidation centers (diacetylene moieties), exhibit a remarkable H2 O2 yield rate of 920.1 µmol g-1 h-1 , superior than that of the linear LCAP-1 (593.2 µmol g-1 h-1 ) and the cross-linked CCAP (433.4 µmol g-1 h-1 ). The apparent quantum efficiency (AQE) and solar-to-chemical energy conversion (SCC) efficiency of LCAP-2 are calculated to be 9.1% (λ = 420 nm) and 0.59%, respectively, surpassing the performance of most previously reported conjugated polymers.

2.
Environ Sci Technol ; 57(49): 20929-20940, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956230

RESUMO

Atomically dispersed metal sites anchored on nitrogen-doped carbonaceous substrates (M-NCs) have emerged as promising alternatives to conventional peroxymonosulfate (PMS) activators; however, the exact contribution of each site still remains elusive. Herein, isolated Fe-N4 active site-decorated three-dimensional NC substrates (FeSA-NC) via a micropore confinement strategy are fabricated to initiate PMS oxidation reaction, achieving a specific activity of 5.16 × 103 L·min-1·g-1 for the degradation of bisphenol A (BPA), which outperforms most of the state-of-the-art single-atom (SA) catalysts. Mechanism inquiry reveals enhanced chemisorption and electron transfer between PMS and FeSA-NC, enabling an inner electron shuttle mechanism in which Fe-N4 serves as a conductive bridge. The Fe-N4 sites reduce the energy barrier for the formation of SO5* and H*, thereby transforming the reaction pathway from directly adjacent electron transfer into reactive oxygen species (ROS)-dominated oxidation. Theoretical calculations and dynamic simulations reveal that the Fe-N4 sites induce facilitated desorption of reaction intermediates (PMS*/BPA*), which collectively contribute to the renewal of active sites and eventually enhance the catalytic durability. This work offers a reasonable interpretation for the important role of the Fe-N4 moiety in altering the activation mechanism and enhancing the antioxidative capacity of NC materials, which fundamentally furnishes theoretical support for SA material design.


Assuntos
Peróxidos , Domínio Catalítico , Oxirredução , Transporte de Elétrons
3.
Heliyon ; 9(9): e20264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810064

RESUMO

The textured surfaces to reduce light reflectivity by using acid-alkali chemical etching and SiNx films are generally necessary for commercial crystalline silicon solar cells. However, this etching process requires a large amount of environmentally harmful acid-alkali solution and has limited options for texture and size. To overcome these disadvantages, a new anti-reflection strategy is proposed in this study, which is using soft nanoimprint lithography to prepare the textured structures on the outside of the SiNx films. The polyurethane with a high refractive index of 1.64 is selected as the texture material, and different templates are selected to prepare it into different light trapping structures, including positive-inverted pyramids, inverted lace cones, and positive-inverted moth-eye nanostructures allowing for easy customization of the textured structures. The finite element simulation and experiments demonstrate that these light trapping structures have a wide spectrum anti-reflection performance in visible and near-infrared bands. With the back surface of the commercial passivated emitter rear contact (PERC) bi-facial solar cells as the imprint substrates, some light trapping structures can reduce the surface weighted average light reflectivity (Rw) at the band of 300-1200 nm from 18.31% to less than 10% and the optimal structures can reduce Rw to 8.71%. This anti-reflection strategy can also be applied to thin-film solar cells and crystalline silicon solar cells of other structures, such as HIT, Topcon, Perovskite/c-Si tandem, and so forth, which shows great development potential.

4.
RSC Adv ; 13(20): 14048-14059, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37181504

RESUMO

Recently, peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are being actively investigated as a potential technology for water decontamination and many efforts have been made to improve the activation efficiency of PMS. Herein, a 0D metal oxide quantum dot (QD)-2D ultrathin g-C3N4 nanosheet (ZnCo2O4/g-C3N4) hybrid was facilely fabricated through a one-pot hydrothermal process and used as an efficient PMS activator. Benefiting from the restricted growth effect of the g-C3N4 support, ultrafine ZnCo2O4 QDs (∼3-5 nm) are uniformly and stably anchored onto the surface. The ultrafine ZnCo2O4 possesses high specific surface areas and shortened mass/electron transport route so that the internal static electric field (Einternal) formed in the interface between p-type ZnCo2O4 and the n-type g-C3N4 semiconductor could speed up the electron transfer during the catalytic reaction. This thereby induces the high-efficiency PMS activation for rapid organic pollutant removal. As expected, the ZnCo2O4/g-C3N4 hybrid catalysts significantly outperformed individual ZnCo2O4 and g-C3N4 in catalytic oxidative degradation of norfloxacin (NOR) in the presence of PMS (95.3% removal of 20 mg L-1 of NOR in 120 min). Furthermore, the ZnCo2O4/g-C3N4-mediated PMS activation system was systematically studied in terms of the identification of reactive radicals, the impact of control factors, and the recyclability of the catalyst. The results of this study demonstrated the great potential of a built-in electric field-driven catalyst as a novel PMS activator for the remediation of contaminated water.

5.
Nat Commun ; 14(1): 1713, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973294

RESUMO

The functions of the influenza virus neuraminidase has been well documented but those of the mammalian neuraminidases remain less explored. Here, we characterize the role of neuraminidase 1 (NEU1) in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models. We find that NEU1 is significantly upregulated in the fibrotic kidneys of patients and mice. Functionally, tubular epithelial cell-specific NEU1 knockout inhibits epithelial-to-mesenchymal transition, inflammatory cytokines production, and collagen deposition in mice. Conversely, NEU1 overexpression exacerbates progressive renal fibrosis. Mechanistically, NEU1 interacts with TGFß type I receptor ALK5 at the 160-200aa region and stabilizes ALK5 leading to SMAD2/3 activation. Salvianolic acid B, a component of Salvia miltiorrhiza, is found to strongly bind to NEU1 and effectively protect mice from renal fibrosis in a NEU1-dependent manner. Collectively, this study characterizes a promotor role for NEU1 in renal fibrosis and suggests a potential avenue of targeting NEU1 to treat kidney diseases.


Assuntos
Nefropatias , Neuraminidase , Obstrução Ureteral , Animais , Masculino , Camundongos , Fibrose , Expressão Gênica , Rim/metabolismo , Nefropatias/patologia , Camundongos Endogâmicos C57BL , Neuraminidase/genética , Neuraminidase/metabolismo , Obstrução Ureteral/metabolismo
6.
Environ Sci Technol ; 56(13): 9474-9485, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613434

RESUMO

Precisely tailoring the electronic structure and surface chemistry of metal-free covalent triazine frameworks (CTFs) for efficient photoactivation of oxyanions is environmentally desirable but still challenging. Of interest to us in this work was to construct artificial defective accumulation sites into a CTF network (CTF-SDx) to synchronously modulate both thermodynamic (e.g., band structure) and kinetic (e.g., charge separation/transfer/utilization and surface adsorption) behaviors and probe how the transformation affected the subsequent activation mechanism of peroxymonosulfate (PMS). With the incorporation of terminal cyano (-CN) groups and boron (B) dopants, the delocalized CTF-SD underwent a narrowed electronic energy gap for increased optical absorption as well as a downshifted valence band position for enhanced oxidation capacity. Moreover, the localized charge accumulation regions induced by the electron-withdrawing -CN groups facilitated the exciton dissociation process, while the adjacent electron-deficient areas enabled strong affinity toward PMS molecules. All of these merits impelled the photoactivation reaction with PMS, and a 15-fold enhancement of bisphenol-A (BPA) removal was found in the CTF-SD2/PMS/vis system compared with the corresponding pristine CTF system. Mechanistic investigations demonstrated that this system decomposed organics primarily through a singlet oxygen-mediated nonradical process, which originated from PMS oxidative activation over photoinduced holes initiated by an electron transfer process, thereby opening a new avenue for designing an efficient PMS activation strategy for the selective oxidation of organic pollutants.

7.
Environ Pollut ; 233: 315-322, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29096304

RESUMO

Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM10 and PM2.5. They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Vento , Poluição do Ar/análise , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA