Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(15): 10255-10261, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38549794

RESUMO

Fluorescence imaging of organelles at the cellular level is important for studying biological processes. The development of a highly emissive fluorescent probe that operates under a suitable excitation light source is a key step in high-quality fluorescence imaging. For long-term, high-fidelity fluorescence imaging of mitochondria-related cellular processes using two-photon microscopy and stimulated emission depletion microscopy, we developed a new benzocoumarin-based cationic fluorescent probe (BS-CN) that is far-red emitting, water-soluble, photostable, and very bright in cells. BS-CN showed a remarkably high quantum yield of 0.35 and a large two-photon excited fluorescence action cross-section of 76 GM, enabling the long-term tracking of mitochondria in live cells. In addition, BS-CN exhibited a certain affinity for RNA and stained nucleoli in fixed cells. A comparative assessment of the photophysical properties and bioimaging performance of benzo[h]coumarin-pyridinium and the structurally similar styryl-pyridinium (BS-MN) clearly indicated the importance of structural rigidity for fluorescence efficiency.

2.
Biomimetics (Basel) ; 8(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504212

RESUMO

Confined catalytic realms and synergistic catalysis sites were constructed using bimetallic active centers in two-dimensional metal-organic frameworks (MOFs) to achieve highly selective oxygenation of cycloalkanes and alkyl aromatics with oxygen towards partly oxygenated products. Every necessary characterization was carried out for all the two-dimensional MOFs. The selective oxygenation of cycloalkanes and alkyl aromatics with oxygen was accomplished with exceptional catalytic performance using two-dimensional MOF Co-TCPPNi as a catalyst. Employing Co-TCPPNi as a catalyst, both the conversion and selectivity were improved for all the hydrocarbons investigated. Less disordered autoxidation at mild conditions, inhibited free-radical diffusion by confined catalytic realms, and synergistic C-H bond oxygenation catalyzed by second metal center Ni employing oxygenation intermediate R-OOH as oxidant were the factors for the satisfying result of Co-TCPPNi as a catalyst. When homogeneous metalloporphyrin T(4-COOCH3)PPCo was replaced by Co-TCPPNi, the conversion in cyclohexane oxygenation was enhanced from 4.4% to 5.6%, and the selectivity of partly oxygenated products increased from 85.4% to 92.9%. The synergistic catalytic mechanisms were studied using EPR research, and a catalysis model was obtained for the oxygenation of C-H bonds with O2. This research offered a novel and essential reference for both the efficient and selective oxygenation of C-H bonds and other key chemical reactions involving free radicals.

3.
Org Lett ; 25(9): 1573-1577, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36825803

RESUMO

Three zigzag BNBNB-embedded anthracene-fused fluoranthenes are synthesized from 1,3,2-benzodiazaboroles through an indole-type N-directed C-H borylation reaction. Single-crystal X-ray diffraction analyses confirm the double bond character of all four alternating B-N bonds and reveal the five-center four-π-electron nature of the BNBNB group. Experimental spectra and density functional theory calculations indicate that borylation remarkably enhances the planarity, extends π-conjugation, and leads to a bathochromic shift in the absorption and emission bands, with remarkable fluorescence quantum yields in solution (92%).

4.
Adv Sci (Weinh) ; 9(24): e2104594, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748165

RESUMO

Desmoplasia is characteristic of pancreatic ductal adenocarcinoma (PDAC), which exhibits 5-year survival rates of 3%. Desmoplasia presents physical and biochemical barriers that contribute to treatment resistance, yet depleting the stroma alone is unsuccessful and even detrimental to patient outcomes. This study is the first demonstration of targeted photoactivable multi-inhibitor liposomes (TPMILs) that induce both photodynamic and chemotherapeutic tumor insult, while simultaneously remediating desmoplasia in orthotopic PDAC. TPMILs targeted with cetuximab (anti-EGFR mAb) contain lipidated benzoporphyrin derivative (BPD-PC) photosensitizer and irinotecan. The desmoplastic tumors comprise human PDAC cells and patient-derived cancer-associated fibroblasts. Upon photoactivation, the TPMILs induce 90% tumor growth inhibition at only 8.1% of the patient equivalent dose of nanoliposomal irinotecan (nal-IRI). Without EGFR targeting, PMIL photoactivation is ineffective. TPMIL photoactivation is also sixfold more effective at inhibiting tumor growth than a cocktail of Visudyne-photodynamic therapy (PDT) and nal-IRI, and also doubles survival and extends progression-free survival by greater than fivefold. Second harmonic generation imaging reveals that TPMIL photoactivation reduces collagen density by >90% and increases collagen nonalignment by >103 -fold. Collagen nonalignment correlates with a reduction in tumor burden and survival. This single-construct phototoxic, chemotherapeutic, and desmoplasia-remediating regimen offers unprecedented opportunities to substantially extend survival in patients with otherwise dismal prognoses.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Receptores ErbB/uso terapêutico , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Lipossomos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas
5.
Org Lett ; 24(4): 1017-1021, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35072476

RESUMO

Two BN-embedded benzo[ghi]perylene (Bzp) and coronene derivatives (BN-Bzp and BN-Cor) have been successfully synthesized from binaphthyl precursors by new efficient one-pot-multibond routes, and their single crystal structures were analyzed. Both experimental spectra and DFT theoretical calculations indicated that the absorption and emission of these BN-embedded polycyclic aromatic hydrocarbons are significantly enhanced comparing with those of their all carbon analogues. Especially, the fluorescence quantum yield of BN-Cor is nearly 20 times higher than that of ordinary coronene.

6.
Photodiagnosis Photodyn Ther ; 32: 102060, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33065301

RESUMO

OBJECTIVES: Numerous studies employ mathematical methods, such as Monte Carlo simulation, to predict the tumor killing effects of photodynamic therapy (PDT) by simulating optical propagation, photosensitizer distribution, and oxygen distribution. Whether these models faithfully reflect tumor killing is unknown, and model validation using tumor cross sections in these studies is usually insufficient to answer this question. To fill this gap in our knowledge, we employed a mouse model of breast cancer to determine the spatiotemporal effects of PDT using direct histopathological and biochemical analyses of whole tumors. METHODS: We prepared approximately 700 5-µm-thick serial sections of breast tumors of syngeneic mice treated with PDT employing the photosensitizer photocarcinorin (PsD-007, a second-generation photosensitizer developed in China). Three adjoining sections were subjected to hematoxylin and eosin staining to assess necrosis, the TUNEL assay to evaluate apoptosis, and CD31 staining to detect angiogenesis, respectively. We then generated a three-dimensional (3D) reconstruction of the tumor to evaluate these processes. We simultaneously used the Monte Carlo method to develop a model of light distribution throughout the tumor to evaluate the actual and simulated tumor killing effects induced by PDT. RESULTS: Tumor necrosis decreased exponentially as a function of distance from the source of illumination, while the distributions of apoptosis and neovascularization were independent of light distribution. Most apoptosis occurred in the lower layers (3000-4000 µm) of the tumor where the light intensity was too low to excite the photosensitizer. Neovascularization occurred at depths ranging from 2500 to 3500 µm. These analyses provided a 3D view of how a tumor is destroyed using PDT. CONCLUSIONS: Although the optical distribution model predicted tumor necrosis caused by PDT, it was ineffective in predicting the sites of apoptosis and vascular destruction. Mathematical modeling is limited in its capabilities required to gain a comprehensive understanding of the spatiotemporal events associated with PDT. The mouse model developed here will serve as a platform for detailed direct histopathological, biochemical, and molecular genetic analyses of the effects of PDT, which will facilitate the development of optimized treatment strategies.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Apoptose , China , Camundongos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
7.
Nano Lett ; 19(11): 7573-7587, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31518145

RESUMO

Despite untiring efforts to develop therapies for pancreatic ductal adenocarcinoma (PDAC), survival statistics remain dismal, necessitating distinct approaches. Photodynamic priming (PDP), which improves drug delivery and combination regimens, as well as tumor photodestruction are key attributes of photodynamic therapy (PDT), making it a distinctive clinical option for PDAC. Localized, high-payload nanomedicine-assisted delivery of photosensitizers (PSs), with molecular specificity and controlled photoactivation, thus becomes critical in order to reduce collateral toxicity during more expansive photodynamic activation procedures with curative intent. As such, targeted photoactivable lipid-based nanomedicines are an ideal candidate but have failed to provide greater than two-fold cancer cell selectivity, if at all, due to their extensive multivariant physical, optical, and chemical complexity. Here, we report (1) a systematic multivariant tuning approach to engineer (Cet, anti-EGFR mAb) photoimmunonanoconjugates (PINs), and (2) stroma-rich heterotypic PDAC in vitro and in vivo models incorporating patient-derived pancreatic cancer-associated fibroblasts (PCAFs) that recapitulate the desmoplasia observed in the clinic. These offer a comprehensive, disease-specific framework for the development of Cet-PINs. Specificity-tuning of the PINs, in terms of PS lipid anchoring, electrostatic modulation, Cet orientation, and Cet surface densities, achieved ∼16-fold binding specificities and rapid penetration of the heterotypic organoids within 1 h, thereby providing a ∼16-fold enhancement in molecular targeted NIR photodestruction. As a demonstration of their inherent amenability for multifunctionality, encapsulation of high payloads of gemcitabine hydrochloride, 5-fluorouracil, and oxaliplatin within the Cet-PINs further improved their antitumor efficacy in the heterotypic organoids. In heterotypic desmoplastic tumors, the Cet-PINs efficiently penetrated up to 470 µm away from blood vessels, and photodynamic activation resulted in substantial tumor necrosis, which was not elicited in T47D tumors (low EGFR) or when using untargeted constructs in both tumor types. Photodynamic activation of the Cet-PINs in the heterotypic desmoplastic tumors resulted in collagen photomodulation, with a 1.5-fold reduction in collagen density, suggesting that PDP may also hold potential for conquering desmoplasia. The in vivo safety profile of photodynamic activation of the Cet-PINs was also substantially improved, as compared to the untargeted constructs. While treatment using the Cet-PINs did not cause any detriment to the mice's health or to healthy proximal tissue, photodynamic activation of untargeted constructs induced severe acute cachexia and weight loss in all treated mice, with substantial peripheral skin necrosis, muscle necrosis, and bowel perforation. This study is the first report demonstrating the true value of molecular targeting for NIR-activable PINs. These constructs integrate high payload delivery, efficient photodestruction, molecular precision, and collagen photomodulation in desmoplastic PDAC tumors in a single treatment using a single construct. Such combined PIN platforms and heterocellular models open up an array of further multiplexed combination therapies to synergistically control desmoplastic tumor progression and extend PDAC patient survival.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoconjugados/uso terapêutico , Nanoconjugados/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Anticorpos Monoclonais/uso terapêutico , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/antagonistas & inibidores , Humanos , Imunoconjugados/administração & dosagem , Camundongos , Nanoconjugados/administração & dosagem , Nanomedicina/métodos , Organoides/efeitos dos fármacos , Organoides/patologia , Neoplasias Pancreáticas/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem
8.
J Photochem Photobiol B ; 198: 111586, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31437760

RESUMO

Metronomic photodynamic therapy (mPDT) has emerged as an attractive treatment for the selective destruction of tumor cells by induction of apoptosis. Here, we compared the effects of mPDT and acute photodynamic therapy (aPDT) on human SW837 colorectal cancer (CRC) cells. CRC cells were subjected to mPDT using various exposure durations, concentrations of 5-aminolevulinic acid (ALA), fluence rates and energy densities. The effects were compared with those induced by aPDT. We found that apoptosis and autophagy were earlier induced to a greater extent by mPDT than by the same dose applied as aPDT. The survival rates for mPDT vs. aPDT were 35.2%, 32.4%,27.6%,31.6% vs. 85.7%, 71.1%, 67.8%, 42.1% after 3, 6, 12, and 24 h PDT, respectively. For the same time points, the apoptotic rates for mPDT vs. aPDT were 43.2%, 47.3%, 54.7%, and 50.3% vs. 14.6%, 17.6%, 27.1%, and 53.2%, respectively. mPDT induced a peak rate of autophagy of 20.0% at 3 h, whereas aPDT induced two smaller peaks at 3 h (14.1%) and 12 h (15.8%). Advanced autophagosomes were more abundant in mPDT- than aPDT-treated cells and appeared earlier after mPDT (3 h) than after aPDT (3-12 h). Western Bloting results showed that the ratio of LC3B-II/ß - actin at 3 h was higher (1.04 times) after mPDT than aPDT. Collectively, these datas indicated that ALA-mPDT was more effective than the same dose of ALA-aPDT at inducing SW837 CRC cell death via apoptosis and autophagy. Thus, mPDT may be a superior choice than aPDT for the treatment of human CRC.


Assuntos
Ácido Aminolevulínico/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
9.
Photochem Photobiol ; 95(1): 364-377, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30125366

RESUMO

With the rapidly emerging designs and applications of light-activated, photodynamic therapy (PDT)-based nanoconstructs, photonanomedicines (PNMs), an unmet need exists to establish whether conventional methods of photochemical and photophysical characterization of photosensitizers are relevant for evaluating new PNMs in order to intelligently guide their design. As a model system, we build on the clinical formulation of benzoporphyrin derivative (BPD), Visudyne® , by developing a panel of nanolipid formulations entrapping new lipidated chemical variants of BPD with differing chemical, photochemical and photophysical properties. These are 16:0 and 20:0 lysophosphocholine-BPD (16:0/20:0 BPD-PC), DSPE-PEG-BPD and BPD-cholesterol. We show that Visudyne® was the most phototoxic formulation to OVCAR-5 cells, and the least effective was liposomal DSPE-PEG-BPD. However, these differences did not match their optical, photophysical and photochemical properties, as the static BPD quenching was highest in Visudyne, which also exhibited the lowest generation of singlet oxygen. Furthermore, we establish that OVCAR-5 cell phototoxicity also does not correlate with rates of photosensitizer photobleaching and fluorescence quantum yields in any nanolipid formulations. These findings warrant critical future studies into subcellular targets and molecular mechanisms of phototoxicity of photodynamic nanoconstructs, as more reliable prognostic surrogates for predicting efficacy to appropriately and intelligently guide their design.


Assuntos
Lipídeos/química , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Processos Fotoquímicos , Porfirinas/química , Porfirinas/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia
10.
Am J Transl Res ; 10(2): 334-351, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511429

RESUMO

This study evaluated the effects and mechanism of action of combining irreversible electroporation (IRE) and photodynamic therapy (PDT) in breast cancer cells in vitro and in vivo. Jin's formula was used to assess killing efficacy of different IRE+PDT dosing combinations in breast cancer MCF-7 cells. Flow cytometry, high-content imaging, and confocal laser scanning microscopy were used to detect apoptosis. qRT-PCR and western blotting were used to evaluate expression of apoptosis-related genes and proteins. IRE+PDT combination therapy was administered to BALB/C mice with breast cancer tumors in vivo; tumor size was used to assess treatment efficacy. Killing mechanisms were examined using transmission electron microscopy and immunohistochemistry. We found that IRE+PDT combination therapy produced significant synergistic killing effects in breast cancer cells (highest Jin q value of 1.32). Early apoptosis rates were significantly higher in the IRE+PDT group (16.0%) than in IRE-alone (7.6%) and PDT-alone (4.6%) groups (P<0.05). qRT-PCR showed higher Caspase-1, -3, -5, -6, -7, -8, and -9 and TNFRSF1A expression with IRE+PDT than with control. Western blots showed increased cleaved Caspase-3, -7, and -9, and PARP levels in the IRE+PDT group. In vivo tumor suppression rate for IRE (1200 V)+PDT (10 mg/kg) was 68.3%. Combination therapy produced the most obvious apoptosis effects. Compared with controls, the IRE+PDT group exhibited lower new blood vessel (VEGF, CD31), metastasis (TGF-ß), and cell proliferation (Ki-67) indicators and higher inflammation indicator (TNF-α) 1 day post-treatment. Thus, combining IRE and PDT enhanced their anti-tumor effects in breast cancer, and apoptosis played a key role in this process.

11.
Biomed Opt Express ; 6(4): 1451-63, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25909027

RESUMO

For predicting pain stimulation effects and avoiding damage in 1940nm laser evoked potentials (LEPs) experiments, a 2-layer finite element model (FEM-2) was constructed. A series of experiments were conducted on ex-vivo pig skin pieces to verify temperature distribution predicted by this model. Various laser powers and beam radii were employed. Experimental data of time-dependent temperature responses in different sub-skin depths and space-dependent surface temperature was recorded by thermocouple instrument. By comparing with the experimental data and model results, FEM-2 model was proved to predict temperature distributions accurately. A logarithmic relationship between laser power density and temperature increment was revealed by the results. It is concluded that power density is an effective parameter to estimate pain and damage effect. The obtained results also indicated that the proposed FEM-2 model can be extended to predict pain and damage thresholds of human skin samples and thus contribute to LEPs study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA