Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Artigo em Inglês | MEDLINE | ID: mdl-37937078

RESUMO

Introduction: Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis, cytopenias, and dysplasia. The gene encoding ten-eleven translocation 2 (tet2), a dioxygenase enzyme that catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, is a recurrently mutated tumor suppressor gene in MDS and other myeloid malignancies. Previously, we reported a stable zebrafish line with a loss-of-function mutation in the tet2 gene. The tet2m/m-mutant zebrafish developed a pre-MDS state with kidney marrow dysplasia, but normal circulating blood counts by 11 months of age and accompanying anemia, signifying the onset of MDS, by 24 months of age. Methods: In the current study, we collected progenitor cells from the kidney marrows of the adult tet2m/m and tet2wt/wt fish at 4 and 15 months of age and conducted enhanced reduced representation of bisulfite sequencing (ERRBS) and bulk RNA-seq to measure changes in DNA methylation and gene expression of hematopoietic stem and progenitor cells (HSPCs). Results and discussion: A global increase in DNA methylation of gene promoter regions and CpG islands was observed in tet2m/m HSPCs at 4 months of age when compared with the wild type. Furthermore, hypermethylated genes were significantly enriched for targets of SUZ12 and the metal-response-element-binding transcription factor 2 (MTF2)-involved in the polycomb repressive complex 2 (PRC2). However, between 4 and 15 months of age, we observed a paradoxical global decrease in DNA methylation in tet2m/m HSPCs. Gene expression analyses identified upregulation of genes associated with mTORC1 signaling and interferon gamma and alpha responses in tet2m/m HSPCs at 4 months of age when compared with the wild type. Downregulated genes in HSPCs of tet2-mutant fish at 4 months of age were enriched for cell cycle regulation, heme metabolism, and interleukin 2 (IL2)/signal transducer and activator of transcription 5 (STAT5) signaling, possibly related to increased self-renewal and clonal advantage in HSPCs with tet2 loss of function. Finally, there was an overall inverse correlation between overall increased promoter methylation and gene expression.

4.
Br J Haematol ; 201(3): 489-501, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36746437

RESUMO

TET2 inactivating mutations serve as initiating genetic lesions in the transformation of haematopoietic stem and progenitor cells (HSPCs). In this study, we analysed known drugs in zebrafish embryos for their ability to selectively kill tet2-mutant HSPCs in vivo. We found that the exportin 1 (XPO1) inhibitors, selinexor and eltanexor, selectively kill tet2-mutant HSPCs. In serial replating colony assays, these small molecules were selectively active in killing murine Tet2-deficient Lineage-, Sca1+, Kit+ (LSK) cells, and also TET2-inactivated human acute myeloid leukaemia (AML) cells. Selective killing of TET2-mutant HSPCs and human AML cells by these inhibitors was due to increased levels of apoptosis, without evidence of DNA damage based on increased γH2AX expression. The finding that TET2 loss renders HSPCs and AML cells selectively susceptible to cell death induced by XPO1 inhibitors provides preclinical evidence of the selective activity of these drugs, justifying further clinical studies of these small molecules for the treatment of TET2-mutant haematopoietic malignancies, and to suppress clonal expansion in age-related TET2-mutant clonal haematopoiesis.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Peixe-Zebra , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas de Ligação a DNA/genética , Dioxigenases/metabolismo , Proteína Exportina 1
5.
Proc Natl Acad Sci U S A ; 120(1): e2217883120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574685

RESUMO

Antibody heavy chain (HC) and light chain (LC) variable region exons are assembled by V(D)J recombination. V(D)J junctional regions encode complementarity-determining-region 3 (CDR3), an antigen-contact region immensely diversified through nontemplated nucleotide additions ("N-regions") by terminal deoxynucleotidyl transferase (TdT). HIV-1 vaccine strategies seek to elicit human HIV-1 broadly neutralizing antibodies (bnAbs), such as the potent CD4-binding site VRC01-class bnAbs. Mice with primary B cells that express receptors (BCRs) representing bnAb precursors are used as vaccination models. VRC01-class bnAbs uniformly use human HC VH1-2 and commonly use human LCs Vκ3-20 or Vκ1-33 associated with an exceptionally short 5-amino-acid (5-aa) CDR3. Prior VRC01-class models had nonphysiological precursor levels and/or limited precursor diversity. Here, we describe VRC01-class rearranging mice that generate more physiological primary VRC01-class BCR repertoires via rearrangement of VH1-2, as well as Vκ1-33 and/or Vκ3-20 in association with diverse CDR3s. Human-like TdT expression in mouse precursor B cells increased LC CDR3 length and diversity and also promoted the generation of shorter LC CDR3s via N-region suppression of dominant microhomology-mediated Vκ-to-Jκ joins. Priming immunization with eOD-GT8 60mer, which strongly engages VRC01 precursors, induced robust VRC01-class germinal center B cell responses. Vκ3-20-based responses were enhanced by N-region addition, which generates Vκ3-20-to-Jκ junctional sequence combinations that encode VRC01-class 5-aa CDR3s with a critical E residue. VRC01-class-rearranging models should facilitate further evaluation of VRC01-class prime and boost immunogens. These new VRC01-class mouse models establish a prototype for the generation of vaccine-testing mouse models for other HIV-1 bnAb lineages that employ different HC or LC Vs.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Vacinas , Camundongos , Humanos , Animais , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , HIV-1/genética , Anticorpos Anti-HIV , DNA Nucleotidilexotransferase , Regiões Determinantes de Complementaridade/genética , Infecções por HIV/prevenção & controle
6.
Sci Immunol ; 7(76): eadd5446, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35951767

RESUMO

SARS-CoV-2 Omicron subvariants have generated a worldwide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron subvariants and prepare for new ones, additional means of isolating broad and potent humanized SARS-CoV-2 neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human VH1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact CDR3 sequences generated by nontemplated junctional modifications during V(D)J recombination. Immunizing this mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several VH1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior patient-derived VH1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding motif via a CDR3-dominated recognition mode. Lattice light-sheet microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and nontraditional mechanism of action suggest that it might have therapeutic potential. Likewise, the SP1-77 binding epitope may inform vaccine strategies. Last, the type of humanized mouse models that we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2 , Fusão de Membrana , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos , Receptores de Antígenos de Linfócitos B
7.
Front Cell Dev Biol ; 9: 709923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722501

RESUMO

Vertebrate erythropoiesis involves nuclear and chromatin condensation at the early stages of terminal differentiation, which is a unique process to distinguish mature erythrocytes from erythroblasts. However, the underlying mechanisms of chromatin condensation during erythrocyte maturation remain elusive. Here, we reported a novel zebrafish mutant cas7 with erythroid maturation deficiency. Positional cloning showed that a single base mutation in tprb gene, which encodes nucleoporin translocated promoter region (Tpr), is responsible for the disrupted erythroid maturation and upregulation of erythroid genes, including ae1-globin and be1-globin. Further investigation revealed that deficient erythropoiesis in tprb cas7 mutant was independent on HIF signaling pathway. The proportion of euchromatin was significantly increased, whereas the percentage of heterochromatin was markedly decreased in tprb cas7 mutant. In addition, TPR knockdown in human K562 cells also disrupted erythroid differentiation and dramatically elevated the expression of globin genes, which suggests that the functions of TPR in erythropoiesis are highly conserved in vertebrates. Taken together, this study revealed that Tpr played vital roles in chromatin condensation and gene regulation during erythroid maturation in vertebrates.

8.
Oncogene ; 40(38): 5718-5729, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331013

RESUMO

Melanomas driven by loss of the NF1 tumor suppressor have a high risk of treatment failure and effective therapies have not been developed. Here we show that loss-of-function mutations of nf1 and pten result in aggressive melanomas in zebrafish, representing the first animal model of NF1-mutant melanomas harboring PTEN loss. MEK or PI3K inhibitors show little activity when given alone due to cross-talk between the pathways, and high toxicity when given together. The mTOR inhibitors, sirolimus, everolimus, and temsirolimus, were the most active single agents tested, potently induced tumor-suppressive autophagy, but not apoptosis. Because addition of the BCL2 inhibitor venetoclax resulted in compensatory upregulation of MCL1, we established a three-drug combination composed of sirolimus, venetoclax, and the MCL1 inhibitor S63845. This well-tolerated drug combination potently and synergistically induces apoptosis in both zebrafish and human NF1/PTEN-deficient melanoma cells, providing preclinical evidence justifying an early-stage clinical trial in patients with NF1/PTEN-deficient melanoma.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Inibidores de MTOR/administração & dosagem , Melanoma/tratamento farmacológico , Neurofibromina 1/genética , PTEN Fosfo-Hidrolase/genética , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Everolimo/administração & dosagem , Everolimo/farmacologia , Humanos , Mutação com Perda de Função , Inibidores de MTOR/farmacologia , Melanoma/genética , Melanoma/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/farmacologia , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
9.
Front Cell Dev Biol ; 9: 670654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996826

RESUMO

Fate determination and expansion of Hematopoietic Stem and Progenitor Cells (HSPCs) is tightly regulated on both transcriptional and post-transcriptional level. Although transcriptional regulation of HSPCs have achieved a lot of advances, its post-transcriptional regulation remains largely underexplored. The small size and high fecundity of zebrafish makes it extraordinarily suitable to explore novel genes playing key roles in definitive hematopoiesis by large-scale forward genetics screening. Here, we reported a novel zebrafish mutant line gemin5 cas008 with a point mutation in gemin5 gene obtained by ENU mutagenesis and genetic screening, causing an earlier stop codon next to the fifth WD repeat. Gemin5 is an RNA-binding protein with multifunction in post-transcriptional regulation, such as regulating the biogenesis of snRNPs, alternative splicing, stress response, and translation control. The mutants displayed specific deficiency in definitive hematopoiesis without obvious defects during primitive hematopoiesis. Further analysis showed the impaired definitive hematopoiesis was due to defective proliferation of HSPCs. Overall, our results indicate that Gemin5 performs an essential role in regulating HSPCs proliferation.

10.
Leukemia ; 34(11): 2992-3006, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32572188

RESUMO

Inactivating mutations in TET2 serve as an initiating genetic lesion in the transformation of hematopoietic stem and progenitor cells (HSPCs). Thus, effective therapy for this subset of patients would ideally include drugs that are selectively lethal in TET2-mutant HSPCs, at dosages that spare normal HSPCs. In this study, we tested 129 FDA-approved anticancer drugs in a tet2-deficient zebrafish model and showed that topoisomerase 1 (TOP1)-targeted drugs and PARP1 inhibitors selectively kill tet2-mutant HSPCs. We found that Tet2-deficient murine bone marrow progenitors and CRISPR-Cas9-induced TET2-mutant human AML cells were more sensitive to both classes of drugs compared with matched control cells. The mechanism underlying the selective killing of TET2-mutant blood cells by these drugs was due to aberrantly low levels of tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme that is important for removing TOP1 cleavage complexes (TOP1cc). Low TDP1 levels yield sensitivity to TOP1-targeted drugs or PARP1 inhibitors and an inability to remove TOP1 cleavage complexes, leading to DNA double-strand breaks and cell death. The finding that TET2 mutations render HSPCs uniquely vulnerable to disruption of TOP1 and PARP1 activity may therefore represent a unique opportunity to use relatively low dosages of these drugs for the "precision therapy" of TET2-mutant myeloid malignancies.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Mutações Sintéticas Letais , Inibidores da Topoisomerase I/farmacologia , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dioxigenases , Genótipo , Humanos , Camundongos , Camundongos Knockout , Fenótipo , Topotecan/farmacologia , Peixe-Zebra
11.
Dis Model Mech ; 12(5)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064769

RESUMO

Somatic loss-of-function mutations of the additional sex combs-like transcriptional regulator 1 (ASXL1) gene are common genetic abnormalities in human myeloid malignancies and induce clonal expansion of mutated hematopoietic stem cells (HSCs). To understand how ASXL1 disruption leads to myeloid cell transformation, we generated asxl1 haploinsufficient and null zebrafish lines using genome-editing technology. Here, we show that homozygous loss of asxl1 leads to apoptosis of newly formed HSCs. Apoptosis occurred via the mitochondrial apoptotic pathway mediated by upregulation of bim and bid Half of the asxl1+/- zebrafish had myeloproliferative neoplasms (MPNs) by 5 months of age. Heterozygous loss of asxl1 combined with heterozygous loss of tet2 led to a more penetrant MPN phenotype, while heterozygous loss of asxl1 combined with complete loss of tet2 led to acute myeloid leukemia (AML). These findings support the use of asxl1+/- zebrafish as a strategy to identify small-molecule drugs to suppress the growth of asxl1 mutant but not wild-type HSCs in individuals with somatically acquired inactivating mutations of ASXL1.


Assuntos
Neoplasias da Medula Óssea/patologia , Mutação/genética , Proteínas Repressoras/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Apoptose , Sequência de Bases , Sobrevivência Celular , Embrião não Mamífero/metabolismo , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/patologia , Organogênese , Regulação para Cima/genética , Peixe-Zebra/embriologia
12.
Cell Res ; 25(8): 946-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26138676

RESUMO

Dysregulation of ribosome biogenesis causes human diseases, such as Diamond-Blackfan anemia, del (5q-) syndrome and bone marrow failure. However, the mechanisms of blood disorders in these diseases remain elusive. Through genetic mapping, molecular cloning and mechanism characterization of the zebrafish mutant cas002, we reveal a novel connection between ribosomal dysfunction and excessive autophagy in the regulation of hematopoietic stem/progenitor cells (HSPCs). cas002 carries a recessive lethal mutation in kri1l gene that encodes an essential component of rRNA small subunit processome. We show that Kri1l is required for normal ribosome biogenesis, expansion of definitive HSPCs and subsequent lineage differentiation. Through live imaging and biochemical studies, we find that loss of Kri1l causes the accumulation of misfolded proteins and excessive PERK activation-dependent autophagy in HSPCs. Blocking autophagy but not inhibiting apoptosis by Bcl2 overexpression can fully rescue hematopoietic defects, but not the lethality of kri1l(cas002) embryos. Treatment with autophagy inhibitors (3-MA and Baf A1) or PERK inhibitor (GSK2656157), or knockdown of beclin1 or perk can markedly restore HSPC proliferation and definitive hematopoietic cell differentiation. These results may provide leads for effective therapeutics that benefit patients with anemia or bone marrow failure caused by ribosome disorders.


Assuntos
Autofagia , Hematopoese , Células-Tronco Hematopoéticas , Proteínas de Peixe-Zebra/genética , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagia/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Indóis/farmacologia , Mutação , Biogênese de Organelas , Inibidores de Proteínas Quinases/farmacologia , Ribossomos/metabolismo , Peixe-Zebra , eIF-2 Quinase/antagonistas & inibidores
13.
PLoS Genet ; 11(7): e1005346, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26131719

RESUMO

In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II ß binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion.


Assuntos
Proteínas de Transporte/genética , Sobrevivência Celular/genética , Reparo do DNA/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Proteínas de Peixe-Zebra/genética , Animais , Apoptose/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/metabolismo , Movimento Celular/genética , Proliferação de Células , Quinase 1 do Ponto de Checagem , Códon sem Sentido/genética , Dano ao DNA/genética , Replicação do DNA/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/metabolismo , Ativação Enzimática/genética , Células-Tronco Hematopoéticas/metabolismo , Hidroxiureia/farmacologia , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
14.
Nat Chem Biol ; 9(9): 579-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23892894

RESUMO

The Wnt/ß-catenin signaling pathway has a crucial role in embryonic development, stem cell maintenance and human disease. By screening a synthetic chemical library of lycorine derivatives, we identified 4-ethyl-5-methyl-5,6-dihydro-[1,3]dioxolo[4,5-j]phenanthridine (HLY78) as an activator of the Wnt/ß-catenin signaling pathway, which acts in a Wnt ligand-dependent manner. HLY78 targets the DIX domain of Axin and potentiates the Axin-LRP6 association, thus promoting LRP6 phosphorylation and Wnt signaling transduction. Moreover, we identified the critical residues on Axin for HLY78 binding and showed that HLY78 may weaken the autoinhibition of Axin. In addition, HLY78 acts synergistically with Wnt in the embryonic development of zebrafish and increases the expression of the conserved hematopoietic stem cell (HSC) markers, runx1 and cmyb, in zebrafish embryos. Collectively, our study not only provides new insights into the regulation of the Wnt/ß-catenin signaling pathway by a Wnt-specific small molecule but also will facilitate therapeutic applications, such as HSC expansion.


Assuntos
Proteína Axina/metabolismo , Benzodioxóis/farmacologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fenantridinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Proteína Axina/antagonistas & inibidores , Proteína Axina/química , Benzodioxóis/química , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Fenantridinas/química , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
15.
Dev Biol ; 374(1): 24-31, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23220656

RESUMO

The regulation of hematopoiesis is generally evolutionarily conserved from zebrafish to mammals, including hematopoietic stem cell formation and blood cell lineage differentiation. In zebrafish, primitive granulocytes originate at two distinct regions, the anterior lateral plate mesoderm (A-LPM) and the intermediate cell mass (ICM). Few studies in the zebrafish have examined genes specifically required for the granulocytic lineage. In this study, we identified the responsible gene for a zebrafish mutant that has relatively normal hematopoiesis, except decreased expression of the granulocyte-specific gene mpx. Positional cloning revealed that phospholipase C gamma-1 (plcg1) was mutated. Deficiency of plcg1 function specifically affected development of granulocytes, especially the maturation process. These results suggested that plcg1 functioned specifically in zebrafish ICM granulopoiesis for the first time. Our studies suggest that specific pathways regulate the differentiation of the hematopoietic lineages.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Granulócitos/citologia , Fosfolipase C gama/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Histonas/metabolismo , Microscopia Confocal/métodos , Modelos Genéticos , Mutagênese , Mutação , Fenótipo , Fosfolipase C gama/genética , Fosforilação , Plasmídeos/metabolismo , RNA Mensageiro/metabolismo , Peixe-Zebra
16.
PLoS One ; 4(7): e6125, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19582161

RESUMO

BACKGROUND: Reduced expression of developmentally important genes and tumor suppressors due to haploinsufficiency or epigenetic suppression has been shown to contribute to the pathogenesis of various malignancies. However, methodology that allows spatio-temporally knockdown of gene expression in various model organisms such as zebrafish has not been well established, which largely limits the potential of zebrafish as a vertebrate model of human malignant disorders. PRINCIPAL FINDING: Here, we report that multiple copies of small hairpin RNA (shRNA) are expressed from a single transcript that mimics the natural microRNA-30e precursor (mir-shRNA). The mir-shRNA, when microinjected into zebrafish embryos, induced an efficient knockdown of two developmentally essential genes chordin and alpha-catenin in a dose-controllable fashion. Furthermore, we designed a novel cassette vector to simultaneously express an intronic mir-shRNA and a chimeric red fluorescent protein driven by lineage-specific promoter, which efficiently reduced the expression of a chromosomally integrated reporter gene and an endogenously expressed gata-1 gene in the developing erythroid progenitors and hemangioblasts, respectively. SIGNIFICANCE: This methodology provides an invaluable tool to knockdown developmental important genes in a tissue-specific manner or to establish animal models, in which the gene dosage is critically important in the pathogenesis of human disorders. The strategy should be also applicable to other model organisms.


Assuntos
Técnicas de Silenciamento de Genes , Peixe-Zebra/embriologia , Animais , DNA Polimerase II/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Regiões Promotoras Genéticas , RNA/genética , Peixe-Zebra/genética
17.
Blood ; 113(6): 1340-9, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18941117

RESUMO

Precise transcriptional control of developmental stage-specific expression and switching of alpha- and beta-globin genes is significantly important to understand the general principles controlling gene expression and the pathogenesis of thalassemia. Although transcription factors regulating beta-globin genes have been identified, little is known about the microRNAs and trans-acting mechanism controlling alpha-globin genes transcription. Here, we show that an erythroid lineage-specific microRNA gene, miR-144, expressed at specific developmental stages during zebrafish embryogenesis, negatively regulates the embryonic alpha-globin, but not embryonic beta-globin, gene expression, through physiologically targeting klfd, an erythroid-specific Krüppel-like transcription factor. Klfd selectively binds to the CACCC boxes in the promoters of both alpha-globin and miR-144 genes to activate their transcriptions, thus forming a negative feedback circuitry to fine-tune the expression of embryonic alpha-globin gene. The selective effect of the miR-144-Klfd pathway on globin gene regulation may thereby constitute a novel therapeutic target for improving the clinical outcome of patients with thalassemia.


Assuntos
Embrião não Mamífero/metabolismo , Eritropoese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , alfa-Globinas/genética , Animais , Animais Geneticamente Modificados , Apoptose , Northern Blotting , Western Blotting , Biologia Computacional , Embrião não Mamífero/citologia , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas Imunoenzimáticas , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/fisiologia , MicroRNAs/metabolismo , Oligonucleotídeos/farmacologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , alfa-Globinas/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA