Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(8): e0237090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764796

RESUMO

Plantar pressure force data derived from gait and posture are commonly used as health indicators for foot diagnosis, injury prevention, and rehabilitation. This study developed a wearable plantar pressure force measurement and analysis (WPPFMA) system based on a flexible sensor matrix film to monitor plantar pressure force in real time. The developed system comprised a flexible sensor matrix film embedded in the insole of the shoe, a wearable data acquisition (DAQ) device with a Bluetooth module, and dedicated software with an intuitive graphical user interface for displaying the plantar pressure force data from receivers by using a terminal unit (laptop or smart-phone). The flexible sensor matrix film integrated 16 piezoresistive cell sensors to detect pressure force at different anatomical zones of the plantar and under different body positions. The signals from the flexible sensor matrix film were collected using the DAQ module embedded in the shoe and transmitted to the receivers through Bluetooth. The real-time display and analysis software can monitor, visualize, and record the detailed plantar pressure force data, such as average pressure force, maximum pressure force, and pressure force distributions and variations over time. The outcomes of the trials in which the system was worn revealed the applicability of the developed WPPFMA system for monitoring plantar pressure force under static and dynamic wearing conditions. The plantar pressure force data derived from this system provide valuable insights for personal foot care, gait analysis, and clinical diagnosis.


Assuntos
Doenças do Pé/diagnóstico , Pé/fisiologia , Análise da Marcha/instrumentação , Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Estudos de Viabilidade , Doenças do Pé/fisiopatologia , Humanos , Postura/fisiologia , Pressão , Sapatos , Smartphone , Software
2.
Soft Robot ; 7(5): 627-638, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32097097

RESUMO

Pneumatic soft actuators (PSAs) are components that produce predesigned motion or force in different end-use devices. PSAs are lightweight, flexible, and compatible in human-machine interaction. The use of PSAs in compression therapy has proven promising in proactive pressure delivery with a wide range of dosages for treatment of chronic venous insufficiency and lymphedema. However, effective design and control of PSAs for dynamic pressure delivery have not been fully elaborated. The purpose of this study is to explore interactive working mechanisms between a PSA and lower limbs through establishing fluid-structure coupling models, an intermittent pneumatic compression (IPC) testing system, and conducting experimental validation. The developed IPC testing system consisted of a PSA unit (multichambered bladders laminated with an external textile shell), a pneumatic controller, and various real-time pressure monitoring sensors and accessory elements. The established coupling model characterized the dynamic response process with varying design parameters of the PSA unit, and demonstrated that the design of initial thickness, stiffness, and air mass flow of the PSA, as well as stiffness of limb tissues of the users, influenced PSA-lower limb interactions and resultant pressure dosages. The simulated results presented a favorable agreement with the experimental data collected by the IPC testing system. This study enhanced understanding of PSA-lower limb interactive working mechanisms and provided an evidence-based technical guidance for functional design of PSA. These results contribute to improving the efficacy of dynamic compression therapy for promotion of venous hemodynamics and user compliance in practice.


Assuntos
Linfedema , Insuficiência Venosa , Humanos , Dispositivos de Compressão Pneumática Intermitente , Extremidade Inferior , Linfedema/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA