Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1360132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707908

RESUMO

Introduction: Considerable evidence has unveiled a potential correlation between gut microbiota and spinal degenerative diseases. However, only limited studies have reported the direct association between gut microbiota and spinal stenosis. Hence, in this study, we aimed to clarify this relationship using a two-sample mendelian randomization (MR) approach. Materials and Methods: Data for two-sample MR studies was collected and summarized from genome-wide association studies (GWAS) of gut microbiota (MiBioGen, n = 13, 266) and spinal stenosis (FinnGen Biobank, 9, 169 cases and 164, 682 controls). The inverse variance-weighted meta-analysis (IVW), complemented with weighted median, MR-Egger, weighted mode, and simple mode, was used to elucidate the causality between gut microbiota and spinal stenosis. In addition, we employed mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and the MR-Egger intercept test to assess horizontal multiplicity. Cochran's Q test to evaluate heterogeneity, and "leave-one-out" sensitivity analysis to determine the reliability of causality. Finally, an inverse MR analysis was performed to assess the reverse causality. Results: The IVW results indicated that two gut microbial taxa, the genus Eubacterium fissicatena group and the genus Oxalobacter, have a potential causal relationship with spinal stenosis. Moreover, eight potential associations between genetic liability of the gut microbiota and spinal stenosis were implied. No significant heterogeneity of instrumental variables or horizontal pleiotropy were detected. In addition, "leave-one-out" sensitivity analysis confirmed the reliability of causality. Finally, the reverse MR analysis revealed that no proof to substantiate the discernible causative relationship between spinal stenosis and gut microbiota. Conclusion: This analysis demonstrated a possible causal relationship between certain particular gut microbiota and the occurrence of spinal stenosis. Further studies focused on the mechanism of gut microbiota-mediated spinal stenosis can lay the groundwork for targeted prevention, monitoring, and treatment of spinal stenosis.


Assuntos
Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Estenose Espinal , Humanos , Microbioma Gastrointestinal/genética , Estenose Espinal/genética , Estenose Espinal/microbiologia , Predisposição Genética para Doença
2.
Curr Med Sci ; 44(2): 355-368, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570439

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a degenerative joint disorder characterized by the gradual degradation of joint cartilage and local inflammation. This study aimed to investigate the anti-OA effect of scutellarein (SCU), a single-unit flavonoid compound obtained from Scutellaria barbata D. Don, in rats. METHODS: The extracted rat chondrocytes were treated with SCU and IL-1ß. The chondrocytes were divided into control group, IL-1ß group, IL-1ß+SCU 50 µmol/L group, and IL-1ß+SCU 100 µmol/L group. Morphology of rat chondrocytes was observed by toluidine blue and safranin O staining. CCK-8 method was used to detect the cytotoxicity of SCU. ELISA, qRT-PCR, Western blotting, immunofluorescence, SAß-gal staining, flow cytometry, and bioinformatics analysis were applied to evaluate the effect of SCU on rat chondrocytes under IL-1ß intervention. Additionally, anterior cruciate ligament transection (ACL-T) was used to establish a rat OA model. Histological changes were detected by safranin O/fast green, hematoxylin-eosin (HE) staining, and immunohistochemistry. RESULTS: SCU protected cartilage and exhibited anti-inflammatory effects via multiple mechanisms. Specifically, it could enhance the synthesis of extracellular matrix in cartilage cells and inhibit its degradation. In addition, SCU partially inhibited the nuclear factor kappa-B/mitogen-activated protein kinase (NF-κB/MAPK) pathway, thereby reducing inflammatory cytokine production in the joint cartilage. Furthermore, SCU significantly reduced IL-1ß-induced apoptosis and senescence in rat chondrocytes, further highlighting its potential role in OA treatment. In vivo experiments revealed that SCU (at a dose of 50 mg/kg) administered for 2 months could significantly delay the progression of cartilage damage, which was reflected in a lower Osteoarthritis Research Society International (OARSI) score, and reduced expression of matrix metalloproteinase 13 (MMP13) in cartilage. CONCLUSION: SCU is effective in the therapeutic management of OA and could serve as a potential candidate for future clinical drug therapy for OA.


Assuntos
Apigenina , Condrócitos , Osteoartrite , Ratos , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/patologia , Cartilagem
3.
Medicine (Baltimore) ; 103(14): e37507, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579070

RESUMO

Interleukin 6 (IL-6), a pleiotropic cytokine, is crucial in a variety of inflammatory and immunological disorders. In recent years, mendelian randomization, which is a widely used and successful method of analyzing causality, has recently been investigated for the relationship between the IL-6 pathway and related diseases. However, no studies have been conducted to review the research hotspots and trends in the field of IL-6 signaling pathway in Mendelian randomization. In this study, the Web of Science Core Collection (WoSCC) served as our literature source database to gather articles about the IL-6 signaling pathway in Mendelian randomization from 2013 to 2023. VOSviewer (version 1.6.18), Microsoft Excel 2021, and Scimago Graphica were employed for bibliometric and visualization analysis. A total of 164 documents that were written by 981 authors coming from 407 institutions across 41 countries and published in 107 journals were located from January 2013 to August 2023. With 64 and 25, respectively, England and the University of Bristol had the highest number of publications. Frontiers in Immunology is the most prolific journal, and Golam M Khandaker has published the highest number of significant articles. The most co-cited article was an article entitled the interleukin-6 receptor as a target for prevention of coronary-heart-disease: a Mendelian randomization analysis, written by Daniel I Swerdlow. The most popular keywords were "mendelian randomization," "interleukin-6," "il-6," "c-reactive protein," "association," "coronary-heart-disease," "inflammation," "instruments," "risk," "rheumatoid arthritis," "depression." The full extent of the existing literature over the last 10 years is systematically revealed in this study, which can provide readers with a valuable reference for fully comprehending the research hotspots and trends in the field of IL-6 signaling pathway in Mendelian randomization.


Assuntos
Artrite Reumatoide , Interleucina-6 , Humanos , Bibliometria , Citocinas , Transdução de Sinais
4.
Front Cell Infect Microbiol ; 14: 1303645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352058

RESUMO

Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Disco Intervertebral/fisiologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/etiologia , Inflamação/complicações
5.
Exp Mol Med ; 55(7): 1413-1423, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394592

RESUMO

Ligamentum flavum hypertrophy (LFH) is the main physiological and pathological mechanism of lumbar spinal canal stenosis (LSCS). The specific mechanism for LFH has not been completely clarified. In this study, bioinformatic analysis, human ligamentum flavum (LF) tissues collection and analysis, and in vitro and in vivo experiments were conducted to explore the effect of decorin (DCN) on LFH pathogenesis. Here, we found that TGF-ß1, collagen I, collagen III, α-SMA and fibronectin were significantly upregulated in hypertrophic LF samples. The DCN protein expression in hypertrophic LF samples was higher than that in non-LFH samples, but the difference was not significant. DCN inhibited the expression of TGF-ß1-induced fibrosis-associated proteins in human LF cells, including collagen I, collagen III, α-SMA, and fibronectin. ELISAs showed that TGF-ß1 can upregulate PINP and PIIINP in the cell supernatant, and this effect was inhibited after DCN administration. Mechanistic studies revealed that DCN suppressed TGF-ß1-induced fibrosis by blocking the TGF-ß1/SMAD3 signaling pathway. In addition, DCN ameliorated mechanical stress-induced LFH in vivo. In summary, our findings indicated that DCN ameliorated mechanical stress-induced LFH by antagonizing the TGF-ß1/SMAD3 signaling pathway in vitro and in vivo. These findings imply that DCN is a potential therapeutic candidate for ligamentum flavum hypertrophy.


Assuntos
Ligamento Amarelo , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Decorina/metabolismo , Fibronectinas/metabolismo , Ligamento Amarelo/metabolismo , Ligamento Amarelo/patologia , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Hipertrofia/metabolismo , Fibrose
6.
J Inflamm (Lond) ; 20(1): 14, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055831

RESUMO

Osteoarthritis (OA) is a common joint disease and is the main cause of physical disability in the elderly. Currently, there is no adequate therapeutic strategy to reverse the progression of OA. Many natural plant extracts have received attention in the treatment of OA due to their potential anti-inflammatory properties, and reduced incidence of adverse events. Dioscin (Dio), a natural steroid saponin, has been demonstrated to inhibit the release of inflammatory cytokines in mouse and rat models of various diseases, and has a protective effect in chronic inflammatory diseases. However, whether Dio alleviates OA progression remains to be explored. In this research, our purposes were to investigate the therapeutic potential of Dio in OA. The results demonstrated that Dio exerted anti-inflammatory effects by repressing NO, PGE2, iNOS and COX-2. Moreover, the application of Dio could repress IL-1ß-induced overexpression of matrix metalloproteinases (MMPs, including MMP1, MMP3, and MMP13) and ADAMTS-5, and improve the synthesis of collagen II and aggrecan, which contribute to the maintenance of chondrocyte matrix homeostasis. The underlying mechanism involved the inhibition of the MAPK and NF-κB signaling pathways by Dio. Furthermore, the treatment of Dio significantly improved the pain behaviors of rat OA models. The in vivo study revealed that Dio could ameliorate cartilage erosion and degradation. These results collectively indicate that Dio can be used as a promising and effective agent for the therapy of OA.

7.
Front Surg ; 10: 1096080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874465

RESUMO

Background: To assess the clinical and radiographical outcomes of 3-level anterior cervical discectomy and fusion (ACDF) with a 3D-printed titanium cage in treating degenerative cervical spondylosis. Methods: In this study, 25 patients with degenerative cervical spondylosis who underwent 3-level ACDF using a 3D-printed titanium cage from March 2019 to June 2021 were retrospectively enrolled. The patient-reported outcome measures (PROMs) were evaluated by visual analog scale (VAS) for the neck (VAS-neck) and arm pain (VAS-arm), Neck Disability Index (NDI) score, Japanese Orthopedic Association (JOA) score, SF-12 concise health survey, and the Odom criteria. The radiographical parameters, including C2-C7 lordosis, segmental angle, segmental height, and subsidence, were assessed. The mean duration of follow-up was 25.6 months. Results: Bony fusion was achieved in all patients (100%). In three patients (12%) mild dysphagia was observed during the follow-up. The VAS-neck, VAS-arm, NDI score, JOA score, SF-12 score, C2-C7 lordosis, and segmental angle improved noticeably at the latest follow-up. Based on the Odom criteria, 22 patients (88%) reported satisfactory (excellent or good). The mean loss of C2-C7 lordosis and segmental angle between the immediate postoperative and the latest follow-up values were 1.6° ± 0.5° and 1.1° ± 0.5°, respectively. The mean subsidence was 0.9 ± 0.6 mm. Conclusion: In patients with multi-level degenerative cervical spondylosis, 3-level ACDF using the 3D-printed titanium cage can effectively relieve the symptoms, stabilize the spine, and restore segmental height and cervical curvature. It is proven to be a reliable option for patients with 3-level degenerative cervical spondylosis. However, a future comparative study involving a larger population and longer follow-up time may be required to further evaluate the safety, efficacy and outcomes of our preliminary results.

8.
J Transl Med ; 21(1): 132, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803784

RESUMO

BACKGROUND: Osteosarcoma is the most common malignant tumor in bone and its prognosis has reached a plateau in the past few decades. Recently, metabolic reprogramming has attracted increasing attention in the field of cancer research. In our previous study, P2RX7 has been identified as an oncogene in osteosarcoma. However, whether and how P2RX7 promotes osteosarcoma growth and metastasis through metabolic reprogramming remains unexplored. METHODS: We used CRISPR/Cas9 genome editing technology to establish P2RX7 knockout cell lines. Transcriptomics and metabolomics were performed to explore metabolic reprogramming in osteosarcoma. RT-PCR, western blot and immunofluorescence analyses were used to determine gene expression related to glucose metabolism. Cell cycle and apoptosis were examined by flowcytometry. The capacity of glycolysis and oxidative phosphorylation were assessed by seahorse experiments. PET/CT was carried out to assess glucose uptake in vivo. RESULTS: We demonstrated that P2RX7 significantly promotes glucose metabolism in osteosarcoma via upregulating the expression of genes related to glucose metabolism. Inhibition of glucose metabolism largely abolishes the ability of P2RX7 to promote osteosarcoma progression. Mechanistically, P2RX7 enhances c-Myc stabilization by facilitating nuclear retention and reducing ubiquitination-dependent degradation. Furthermore, P2RX7 promotes osteosarcoma growth and metastasis through metabolic reprogramming in a predominantly c-Myc-dependent manner. CONCLUSIONS: P2RX7 plays a key role in metabolic reprogramming and osteosarcoma progression via increasing c-Myc stability. These findings provide new evidence that P2RX7 might be a potential diagnostic and/or therapeutic target for osteosarcoma. Novel therapeutic strategies targeting metabolic reprogramming appear to hold promise for a breakthrough in the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Osteossarcoma/genética , Osteossarcoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Glucose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/uso terapêutico
9.
J Nanobiotechnology ; 21(1): 27, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36694219

RESUMO

BACKGROUND: Magnetofection-mediated gene delivery shows great therapeutic potential through the regulation of the direction and degree of differentiation. Lumbar degenerative disc disease (DDD) is a serious global orthopaedic problem. However, even though intervertebral fusion is the gold standard for the treatment of DDD, its therapeutic effect is unsatisfactory. Here, we described a novel magnetofection system for delivering therapeutic miRNAs to promote osteogenesis and angiogenesis in patients with lumbar DDD. RESULTS: Co-stimulation with electromagnetic field (EMF) and iron oxide nanoparticles (IONPs) enhanced magnetofection efficiency significantly. Moreover, in vitro, magnetofection of miR-21 into bone marrow mesenchymal stem cells (BMSCs) and human umbilical endothelial cells (HUVECs) influenced their cellular behaviour and promoted osteogenesis and angiogenesis. Then, gene-edited seed cells were planted onto polycaprolactone (PCL) and hydroxyapatite (HA) scaffolds (PCL/HA scaffolds) and evolved into the ideal tissue-engineered bone to promote intervertebral fusion. Finally, our results showed that EMF and polyethyleneimine (PEI)@IONPs were enhancing transfection efficiency by activating the p38 MAPK pathway. CONCLUSION: Our findings illustrate that a magnetofection system for delivering miR-21 into BMSCs and HUVECs promoted osteogenesis and angiogenesis in vitro and in vivo and that magnetofection transfection efficiency improved significantly under the co-stimulation of EMF and IONPs. Moreover, it relied on the activation of p38 MAPK pathway. This magnetofection system could be a promising therapeutic approach for various orthopaedic diseases.


Assuntos
Campos Eletromagnéticos , Degeneração do Disco Intervertebral , MicroRNAs , Osteogênese , Humanos , Diferenciação Celular , Células Endoteliais , Nanopartículas Magnéticas de Óxido de Ferro , MicroRNAs/genética , Osteogênese/genética , Osteogênese/fisiologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia
10.
Front Bioeng Biotechnol ; 10: 1071776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545678

RESUMO

Osteoarthritis (OA) is one of the most prevalent chronic degenerative joint diseases affecting adults in their middle or later years. It is characterized by symptoms such as joint pain, difficulty in movement, disability, and even loss of motion. Moreover, the onset and progression of inflammation are directly associated with OA. In this research, we evaluated the impact of Flavokawain A (FKA) on osteoarthritis. In-vitro effects of FKA on murine chondrocytes have been examined using cell counting kit-8 (CCK-8), safranin o staining, western blot, immunofluorescence staining, senescence ß-galactosidase staining, flow cytometry analysis, and mRFP-GFP-LC3 adenovirus infection. An in-vivo model of destabilization of the medial meniscus (DMM) was employed to investigate FKA's effect on OA mouse. An analysis of bioinformatics was performed on FKA and its potential role in OA. It was observed that FKA blocked interleukin (IL)-1ß-induced expression of inflammatory factors, i.e., cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) in chondrocytes. In addition, FKA also downregulated the catabolic enzyme expression, i.e., aggrecanase-2 (ADAMTS5) and matrix metalloproteinases (MMPs), and helped in the upregulation of the anabolic protein expression, i.e., type II collagen (Col2), Aggrecan, and sry-box transcription factor 9 (SOX9). Moreover, FKA ameliorated IL-1ß-triggered autophagy in chondrocytes, and it was observed that the FKA causes anti-inflammatory effects by the mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathways inhibition. The results of immunohistochemical analysis and microcomputed tomography from the in vivo OA mouse model confirmed the therapeutic effect of FKA. Finally, we assessed the anti-arthritic impacts of FKA by conducting in vivo and in vitro analyses. We concluded that FKA can be employed as a useful therapeutic agent for OA therapy, but the findings require needs further clinical investigation.

11.
Front Pharmacol ; 12: 774316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975478

RESUMO

Laminectomy is commonly performed to treat degenerative spinal diseases by reducing compression on the spinal cord and nerve roots. The postoperative epidural fibrosis and epidural adhesions may result in failed back surgery syndrome, which is characterized by the symptoms of lower back pain or leg pain. There is currently no satisfactory treatment for this complication. The pathological processes of epidural fibrosis and epidural adhesions are relevant to the proliferation of fibroblasts, transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) protein. According to reports, transforming growth factor-ß1 (TGF-ß1) played a vital role in the development of fibrosis by promoting aforementioned processes. Decorin, an endogenous proteoglycan and natural inhibitor of TGF-ß1, has exhibited prominent anti-fibrosis activity in various scar formation and fibrosis models of many organs. However, the preventive effect of decorin on epidural fibrosis and epidural adhesions requires further investigation. Here, we investigated the therapeutic effects and potential mechanisms of decorin on epidural fibrosis and epidural adhesions. Our results indicated that decorin could significantly suppress the TGF-ß1-induced proliferation, transdifferentiation, and extracellular matrix production in primary fibroblasts. Furthermore, Smad2/3 signaling pathway had been demonstrated to be involved in the preventive effect of decorin. Moreover, administration of decorin in vivo could notably inhibit epidural fibrosis and epidural adhesions after laminectomy. To date, there is no approved therapy to target TGF-ß1 for the treatment of epidural fibrosis and epidural adhesions after laminectomy. Our research proved the anti-fibrosis effect of decorin, which may provide an effective and promising treatment for epidural fibrosis and epidural adhesions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA