Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246495

RESUMO

Groundwater is an essential resource in the Sundarban regions of India and Bangladesh, but its quality is deteriorating due to anthropogenic impacts. However, the integrated factors affecting groundwater chemistry, source distribution, and health risk are poorly understood along the Indo-Bangla coastal border. The goal of this study is to assess groundwater chemistry, associated driving factors, source contributions, and potential non-carcinogenic health risks (PN-CHR) using unsupervised machine learning models such as a self-organizing map (SOM), positive matrix factorization (PMF), ion ratios, and Monte Carlo simulation. For the Sundarban part of Bangladesh, the SOM clustering approach yielded six clusters, while it yielded five for the Indian Sundarbans. The SOM results showed high correlations among Ca2+, Mg2+, and K+, indicating a common origin. In the Bangladesh Sundarbans, mixed water predominated in all clusters except for cluster 3, whereas in the Indian Sundarbans, Cl--Na+ and mixed water dominated in clusters 1 and 2, and both water types dominated the remaining clusters. Coupling of SOM, PMF, and ionic ratios identified rock weathering as a driving factor for groundwater chemistry. Clusters 1 and 3 were found to be influenced by mineral dissolution and geogenic inputs (overall contribution of 47.7%), while agricultural and industrial effluents dominated clusters 4 and 5 (contribution of 52.7%) in the Bangladesh Sundarbans. Industrial effluents and agricultural activities were associated with clusters 3, 4, and 5 (contributions of 29.5% and 25.4%, respectively) and geogenic sources (contributions of 23 and 22.1% in clusters 1 and 2) in Indian Sundarbans. The probabilistic health risk assessment showed that NO3- poses a higher PN-CHR risk to human health than F- and As, and that potential risk to children is more evident in the Bangladesh Sundarban area than in the Indian Sundarbans. Local authorities must take urgent action to control NO3- emissions in the Indo-Bangla Sundarbans region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Monitoramento Ambiental/métodos , Aprendizado de Máquina não Supervisionado , Agricultura , Água , Poluentes Químicos da Água/análise , Qualidade da Água
2.
J Contam Hydrol ; 260: 104284, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101231

RESUMO

Microplastic (MP) pollution has evolved into a significant worldwide environmental concern due to its widespread sources, enduring presence, and adverse effects on lentic ecosystems and human well-being. The growing awareness of the hidden threat posed by MPs in lentic ecosystems has emphasized the need for more in-depth research. Unlike marine environments, there remain unanswered questions about MP hotspots, ecotoxic effects, transport mechanisms, and fragmentation in lentic ecosystems. The introduction of MPs represents a novel threat to long-term environmental health, posing unresolved challenges for sustainable management. While MP pollution in lentic ecosystems has garnered global attention due to its ecotoxicity, our understanding of MP hotspots in lakes from an Asian perspective remains limited. Hence, the aim of this review is to provide a comprehensive analysis of MP hotspots, morphological attributes, ecotoxic impacts, sustainable solutions, and future challenges across Asia. The review summarizes the methods employed in previous studies and the techniques for sampling and analyzing microplastics in lake water and sediment. Notably, most studies concerning lake microplastics tend to follow the order of China > India > Pakistan > Nepal > Turkey > Bangladesh. Additionally, this review critically addresses the analysis of microplastics in lake water and sediment, shedding light on the prevalent net-based sampling methods. Ultimately, this study emphasizes the existing research gaps and suggests new research directions, taking into account recent advancements in the study of microplastics in lentic environments. In conclusion, the review advocates for sustainable interventions to mitigate MP pollution in the future, highlighting the presence of MPs in Asian lakes, water, and sediment, and their potential ecotoxicological repercussions on both the environment and human health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Lagos , Água , Monitoramento Ambiental/métodos
3.
Sci Total Environ ; 904: 166927, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37704149

RESUMO

Water contamination undermines human survival and economic growth. Water resource protection and management require knowledge of water hydrochemistry and drinking water quality characteristics, mechanisms, and factors. Self-organizing maps (SOM) have been developed using quantization and topographic error approaches to cluster hydrochemistry datasets. The Piper diagram, saturation index (SI), and cation exchange method were used to determine the driving mechanism of hydrochemistry in both surface and groundwater, while the Gibbs diagram was used for surface water. In addition, redundancy analysis (RDA) and a generalized linear model (GLM) were used to determine the key drinking water quality parameters in the study area. Additionally, the study aimed to utilize Explainable Artificial Intelligence (XAI) techniques to gain insights into the relative importance and impact of different parameters on the entropy water quality index (EWQI). The SOM results showed that thirty neurons generated the hydrochemical properties of water and were organized into four clusters. The Piper diagram showed that the primary hydrochemical facies were HCO3--Ca2+ (cluster 4), Cl---Na+ (all clusters), and mixed (clusters 1 and 4). Results from SI and cation exchange show that demineralization and ion exchange are the driving mechanisms of water hydrochemistry. About 45 % of the studied samples are classified as "medium quality"," that could be suitable as drinking water with further refinement. Cl- may pose increased non-carcinogenic risk to adults, with children at double risk. Cluster 4 water is low-risk, supporting EWQI findings. The RDA and GLM observations agree in that Ca2+, Mg2+, Na+, Cl- and HCO3- all have a positive and significant effect on EWQI, with the exception of K+. TDS, EC, Na+, and Ca2+ have been identified as influencing factors based on bagging-based XAI analysis at global and local levels. The analysis also addressed the importance of SO4, HCO3, Cl, Mg2+, K+, and pH at specific locations.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Humanos , Qualidade da Água , Monitoramento Ambiental , Água Potável/análise , Inteligência Artificial , Poluentes Químicos da Água/análise , Água Subterrânea/química , Cátions/análise
4.
Sci Total Environ ; 887: 164164, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37187394

RESUMO

During the COVID-19 pandemic, people used personal protective equipment (PPE) to lessen the spread of the virus. The release of microplastics (MPs) from discarded PPE is a new threat to the long-term health of the environment and poses challenges that are not yet clear. PPE-derived MPs have been found in multi-environmental compartments, e.g., water, sediments, air, and soil across the Bay of Bengal (BoB). As COVID-19 spreads, healthcare facilities use more plastic PPE, polluting aquatic ecosystems. Excessive PPE use releases MPs into the ecosystem, which aquatic organisms ingest, distressing the food chain and possibly causing ongoing health problems in humans. Thus, post-COVID-19 sustainability depends on proper intervention strategies for PPE waste, which have received scholarly interest. Although many studies have investigated PPE-induced MPs pollution in the BoB countries (e.g., India, Bangladesh, Sri Lanka, and Myanmar), the ecotoxicity impacts, intervention strategies, and future challenges of PPE-derived waste have largely gone unnoticed. Our study presents a critical literature review covering the ecotoxicity impacts, intervention strategies, and future challenges across the BoB countries (e.g., India (162,034.45 tons), Bangladesh (67,996 tons), Sri Lanka (35,707.95 tons), and Myanmar (22,593.5 tons). The ecotoxicity impacts of PPE-derived MPs on human health and other environmental compartments are critically addressed. The review's findings infer a gap in the 5R (Reduce, Reuse, Recycle, Redesign, and Restructure) Strategy's implementation in the BoB coastal regions, hindering the achievement of UN SDG-12. Despite widespread research advancements in the BoB, many questions about PPE-derived MPs pollution from the perspective of the COVID-19 era still need to be answered. In response to the post-COVID-19 environmental remediation concerns, this study highlights the present research gaps and suggests new research directions considering the current MPs' research advancements on COVID-related PPE waste. Finally, the review suggests a framework for proper intervention strategies for reducing and monitoring PPE-derived MPs pollution in the BoB countries.


Assuntos
COVID-19 , Humanos , Ecotoxicologia , Ecossistema , Plásticos/toxicidade , Pandemias , Microplásticos , Equipamento de Proteção Individual
5.
Environ Geochem Health ; 45(10): 7237-7253, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37148429

RESUMO

Operational small-scale coal mining (OSCM) is one of the most significant sources of chromium (Cr) and lead (Pb) pollution in Bangladesh. Attempts to minimize or lessen the use of Cr and Pb in OSCM have shown unsatisfactory results, mainly because they need to address the sociotechnical complexity of pollution concerns in OSCM. This research adopts a multidisciplinary, sociotechnical approach to addressing Cr and Pb problems, coupling soil sampling for Cr and Pb with questionnaires of miners' and inhabitants' perceptions of pollution and its distribution. The study was undertaken in the Barapukuria coal basin in northwest Bangladesh. Except for mining areas (average of 49.80 ± 27.25 mg/kg), Cr levels in soils exceeded the world average in the periphery (73.34 ± 24.39 mg/kg, ~ 1.2 times) and residential areas (88.85 ± 35.87 mg/kg, 1.5 times the world standard of 59.5 mg/kg). Pb levels in soils exceeded national and global averages in mining (53.56 ± 37.62 mg/kg, ~ 1.9 times), periphery (35.05 ± 21.77 mg/kg, ~ 1.3 times), and residential areas (32.14 ± 26.59 mg/kg, ~ 1.2 times) when compared to Bangladesh and global standards of 20 and 27 mg/kg. Pb levels were highest in mining areas, while Cr concentrations were highest in residential areas. The questionnaire findings indicated that miners and inhabitants did not correctly assume that the highest levels of Cr and Pb pollution would be found in these areas. Among all respondents, 54% are unaware of the health impacts of prolonged Cr and Pb exposure. They face respiratory problems (38.6%), skin diseases (32.7%), and other health issues. A large number of people (66.6%) agreed with the fact that Cr and Pb contamination has an impact on drinking water. Cr and Pb pollution has caused 40% crop loss and a 36% decrease in productivity in the agricultural sector. However, respondents underestimated the level of Cr pollution in mining areas, and most assumed that only individuals working directly with mines were impacted by the Cr and Pb content. Participants also rated the reduction of Cr and Pb contamination as of low importance. There is less awareness of Cr and Pb pollution among miners and inhabitants. Sincere efforts to reduce Cr and Pb pollution will likely be met with extra attention and hostility.


Assuntos
Minas de Carvão , Metais Pesados , Poluentes do Solo , Humanos , Solo , Cromo , Metais Pesados/análise , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Mineração , Percepção , Medição de Risco , China
6.
Mar Pollut Bull ; 191: 114960, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119588

RESUMO

Heavy metal(loid)s inputs contribute to human and environmental stresses in the coastal zones of Bangladesh. Several studies have been conducted on metal(loid)s pollution in sediment, soil, and water in the coastal zones. However, they are sporadic, and no attempt has been made in coastal zones from the standpoint of chemometric review. The current work aims to provide a chemometric assessment of the pollution trend of metal(loid)s, namely arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), and nickel (Ni) in sediments, soils, and water across the coastal zones from 2015 to 2022. The findings showed that 45.7, 15.2, and 39.1 % of studies on heavy metal(loid)s were concentrated in the eastern, central, and western zones of coastal Bangladesh. The obtained data were further modeled using chemometric approaches, such as the contamination factor, pollution load index, geoaccumulation index, degree of contamination, Nemerow's pollution index, and ecological risk index. The results revealed that metal(loid)s, primarily Cd, have severely polluted the sediments (contamination factor, CF = 5.20) and soils (CF = 9.35) of coastal regions. Water was moderately polluted (Nemerow's pollution index, PN=5.22 ± 6.26) in the coastal area. The eastern zone was the most polluted compared to other zones, except for a few observations in the central zone. The overall ecological risks posed by metal(loid)s highlighted the significant ecological risk in sediments (ecological risk index, RI = 123.50) and soils (RI = 238.93) along the eastern coast. The coastal zone may have higher pollution levels due to the proximity of industrial effluent, residential sewage discharge, agricultural activities, sea transport, metallurgical industries, shipbreaking and recycling operations, and seaport activities, which are the major sources of metal(loid)s. This study will provide useful information to the relevant authorities and serve as the foundation for future management and policy decisions to reduce metal(loid) pollution in the coastal zones of southern Bangladesh.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cádmio , Bangladesh , Quimiometria , Medição de Risco , Metais Pesados/análise , Poluentes do Solo/análise , Solo , Água , Monitoramento Ambiental , China
7.
Sci Total Environ ; 876: 162851, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921864

RESUMO

Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are two major atmospheric pollutants that significantly threaten human health, the environment, and ecosystems worldwide. Despite this, only some studies have investigated the spatiotemporal hotspots of NO2 and SO2, their trends, production, and sources in Asia. Our study presents a literature review covering the production, trends, and sources of NO2 and SO2 across Asian countries (e.g., Bangladesh, China, India, Iran, Japan, Pakistan, Malaysia, Kuwait, and Nepal). Based on the findings of the review, NO2 and SO2 pollution are increasing due to industrial activity, fossil fuel burning, biomass burning, heavy traffic movement, electricity generation, and power plants. There is significant concern about health risks associated with NO2 and SO2 emissions in Bangladesh, China, India, Malaysia, and Iran, as they pay less attention to managing and controlling pollution. Even though the lack of quality datasets and adequate research in most Asian countries further complicates the management and control of NO2 and SO2 pollution. This study has NO2 and SO2 pollution scenarios, including hotspots, trends, sources, and their influences on Asian countries. This study highlights the existing research gaps and recommends new research on identifying integrated sources, their variations, spatiotemporal trends, emission characteristics, and pollution level. Finally, the present study suggests a framework for controlling and monitoring these two pollutants' emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Ecossistema , Dióxido de Enxofre/análise , Paquistão , Material Particulado/análise
8.
Environ Res ; 226: 115688, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931377

RESUMO

The sustainability of agricultural practices is seriously threatened by the quality of water used for irrigation. This paper aims to evaluate the suitability of irrigation water and identify the region suitable for agricultural use in the Haor basin of Bangladesh using conventional irrigation indices such as sodium adsorption ratio (SAR), percent sodium (Na%), magnesium hazard ratio (MHR), permeability index (PI), and Kelly's ratio (KR), as well as novel irrigation indices such as, Shannon's entropy index for irrigation water quality (EWQ) and fuzzy logic index for irrigation water quality (FIWQI). The main influences of groundwater and surface water parameters on irrigation indices were predicted using automatic linear modeling (ALM). Forty water samples were collected from shallow tube wells, rivers, canals, ponds, and drainage systems within agricultural land sampled and analyzed for cations and anions. SAR and KR show that 52.5% and 60% of the samples exceeded the allowable level, respectively, indicating that they were unsuitable for irrigation. According to EWQI, about 55% of the analyzed samples were of good quality, while 45% were of medium quality. ALM predicted that KR (0.98), Na% (0.87), and MHR (0.14) were the main significant factors affecting SAR and KR. ALM shows that elevated sodium, magnesium, and calcium are the most important factors affecting irrigation water suitability. The EWQI and FIWQI integrated models showed that water from nearly 30% of the sampling sites would need treatment before use. A new suitability map created by overlaying all parameters showed that surface water and some groundwater in the western and southwestern portions are suitable for agriculture. The north-central part is unsuitable for irrigation due to excessive sodium and magnesium levels. This paper will highlight the irrigation pattern for regional water resource use, identify new suitable regions, and improve sustainable agricultural practices in the Haor basin.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Lógica Fuzzy , Entropia , Magnésio , Benchmarking , Modelos Lineares , Poluentes Químicos da Água/análise , Qualidade da Água , Sódio , Irrigação Agrícola
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA