Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8871, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614191

RESUMO

Blending of artificial restoration materials to the natural tooth is challenging. Beyond just color, optical properties, particularly translucency, substantially influence the final appearance. The more chameleon effect that the restorative materials exhibit, the more natural looking restorations. The purpose of this study is to investigate the influence of restorative material translucency on the chameleon effect. Five types of resin composite in three different shades as well as one shade of conventional glass ionomer cement were fabricated into disks. To analyze the chameleon effect, glass ceramic blocks were milled to create four wells in each block. The restorative materials were filled into the wells. The color was measured with CIE L*a*b* every 6 months. Statistical analysis was conducted using Two-Way Repeated Measures ANOVA. The material with the highest translucency was flowable resin composite. The high translucency materials exhibited an immediate chameleon effect, as did the bulk-fill resin composites, which are low translucency. Both high and low translucency materials exhibited a delayed chameleon effect for 3 years, except for the bulk fill resin composites. The translucency of the restorative materials had a 68% positive correlation with their chameleon effect. The age of the restoration is one important factor influencing the color blending.


Assuntos
Resinas Compostas , Cimentos de Ionômeros de Vidro , Cor , Teste de Materiais
2.
Tissue Eng Part A ; 16(6): 1997-2006, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20088703

RESUMO

This study investigated the effect of acemannan (Aloe vera gel polysaccharide) on dentin formation. Primary human dental pulp cells were treated with acemannan. New DNA synthesis, bone morphogenetic protein-2, alkaline phosphatase activity, dentin sialoprotein expression, and mineralization were determined by [(3)H]-thymidine incorporation, enzyme-linked immunosorbent assay, biochemical assay, western blotting, and Alizarin Red staining, respectively. Then the upper first molars of 24 male Sprague Dawley rats were intentionally exposed and capped with either acemannan or calcium hydroxide. At day 28, the teeth were histopathologically examined and evaluated for the degree of inflammation, dentin bridge formation, and pulp tissue organization. The results revealed that acemannan significantly increased pulp cell proliferation, bone morphogenetic protein-2, alkaline phosphatase activity, dentin sialoprotein expression, and mineralization, compared with the untreated group. The acemannan-treated group also exhibited a complete homogeneous calcified dentin bridge and good pulp tissue organization, whereas neither was detected in the calcium hydroxide-treated and sham groups. In the acemannan-treated group, either mild or no inflammation was found, whereas the other groups had various degrees of inflammation. The data suggest that acemannan promotes dentin formation by stimulating primary human dental pulp cell proliferation, differentiation, extracellular matrix formation, and mineralization. Acemannan also has pulpal biocompatibility and promotes soft tissue organization.


Assuntos
Aloe/química , Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Dentina/metabolismo , Mananas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/metabolismo , Humanos , Masculino , Mananas/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA