Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446261

RESUMO

Plasmodium vivax is the most widespread cause of malaria, especially in subtropical and temperate regions such as Asia-Pacific and America. P. vivax lactate dehydrogenase (PvLDH), an essential enzyme in the glycolytic pathway, is required for the development and reproduction of the parasite. Thus, LDH from these parasites has garnered attention as a diagnostic biomarker for malaria and as a potential molecular target for developing antimalarial drugs. In this study, we prepared a transformed Escherichia coli strain for the overexpression of PvLDH without codon optimization. We introduced this recombinant plasmid DNA prepared by insertion of the PvLDH gene in the pET-21a(+) expression vector, into the Rosetta(DE3), an E. coli strain suitable for eukaryotic protein expression. The time, temperature, and inducer concentration for PvLDH expression from this E. coli Rosetta(DE3), containing the original PvLDH gene, were optimized. We obtained PvLDH with a 31.0 mg/L yield and high purity (>95%) from this Rosetta(DE3) strain. The purified protein was characterized structurally and functionally. The PvLDH expressed and purified from transformed bacteria without codon optimization was successfully demonstrated to exhibit its potential tetramer structure and enzyme activity. These findings are expected to provide valuable insights for research on infectious diseases, metabolism, diagnostics, and therapeutics for malaria caused by P. vivax.


Assuntos
Malária Vivax , Malária , Humanos , Plasmodium vivax/genética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/química , Escherichia coli/genética , Malária Vivax/parasitologia , Malária/genética , Códon/genética
2.
Analyst ; 141(24): 6499-6502, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27841380

RESUMO

Fluorescence polarization (FP) is a sensitive, robust, and homogeneous assay format, able to probe a diversity of biological molecules and their interactions. Herein, we describe a new FP strategy based on the use of streptavidin as a signal amplifier. Such signal amplified fluorescence polarization (SAFP) was used to monitor the binding affinity of human angiogenin and a single-stranded DNA aptamer. Streptavidin was bound to a biotinylated single-stranded DNA aptamer and the interaction between this complex and Alexa Fluor 488 labelled human angiogenin was measured. A dissociation constant of 135.3 ± 32.9 nM and a limit of detection of 6.3 nM were successfully extracted only when the FP signal was increased (without binding hindrance) via streptavidin. Moreover, the demonstrated approach was specific to target molecules without any non-specific binding. The streptavidin-triggered SAFP method unlike amplification strategies that utilize nanomaterials (such as graphene oxides, carbon nanotubes, and metal nanoparticles) is not compromised by fluorescence quenching, and it is able to operate within nanomolar concentration regimes. Furthermore, unlike the other FP signal amplification strategies that use dual binding DNA probes, the presented method is simple to implement with signal amplification only requiring the binding of streptavidin with biotinylated DNA. This method could be expanded to analyze molecular interactions and it may be a useful tool for FP measurement by reducing the concentration of rare and expensive protein samples.


Assuntos
Técnicas Biossensoriais , DNA/análise , Polarização de Fluorescência , Estreptavidina/química , Aptâmeros de Nucleotídeos/análise , Humanos , Ligação Proteica , Ribonuclease Pancreático/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA